Matrix: TSOPF/TSOPF_FS_b9_c6

Description: transient optimal power flow, Full-Space. Guangchao Geng, Zhejiang Univ

TSOPF/TSOPF_FS_b9_c6 graph
(undirected graph drawing)


TSOPF/TSOPF_FS_b9_c6 dmperm of TSOPF/TSOPF_FS_b9_c6
scc of TSOPF/TSOPF_FS_b9_c6

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: TSOPF
  • Click here for a description of the TSOPF group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 214 KB. Use UFget(2231) or UFget('TSOPF/TSOPF_FS_b9_c6') in MATLAB.
  • download in Matrix Market format, file size: 293 KB.
  • download in Rutherford/Boeing format, file size: 198 KB.

    Matrix properties
    number of rows14,454
    number of columns14,454
    nonzeros147,972
    structural full rank?yes
    structural rank14,454
    # of blocks from dmperm2
    # strongly connected comp.2
    explicit zero entries0
    nonzero pattern symmetrysymmetric
    numeric value symmetrysymmetric
    typereal
    structuresymmetric
    Cholesky candidate?no
    positive definite?no

    authorG. Geng
    editorT. Davis
    date2009
    kindpower network problem
    2D/3D problem?no

    Additional fieldssize and type
    bsparse 14454-by-1

    Notes:

    Transient stability-constrained optimal power flow (TSOPF) problems from     
    Guangchao Geng, Institute of Power System, College of Electrical Engineering,
    Zhejiang University, Hangzhou, 310027, China.  (genggc AT gmail DOT com).    
    Matrices in the  Full-Space (FS) group are symmetric indefinite, and are best
    solved with MA57.  Matrices in the the Reduced-Space (RS) group are best     
    solved with KLU, which for these matrices can be 10 times faster than UMFPACK
    or SuperLU.                                                                  
    

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD178,786
    Cholesky flop count2.6e+06
    nnz(L+U), no partial pivoting, with AMD343,118
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD591,437
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD42,799,020

    SVD-based statistics:
    norm(A)5306.19
    min(svd(A))6.37429e-09
    cond(A)8.32437e+11
    rank(A)14,444
    sprank(A)-rank(A)10
    null space dimension10
    full numerical rank?no
    singular value gap1.22581

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    TSOPF/TSOPF_FS_b9_c6 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.