Matrix: Schenk_IBMNA/c-47

Description: IBM TJ Watson, non-linear optimization

Schenk_IBMNA/c-47 graph
(undirected graph drawing)


Schenk_IBMNA/c-47

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Schenk_IBMNA
  • Click here for a description of the Schenk_IBMNA group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 945 KB. Use UFget(1566) or UFget('Schenk_IBMNA/c-47') in MATLAB.
  • download in Matrix Market format, file size: 717 KB.
  • download in Rutherford/Boeing format, file size: 598 KB.

    Matrix properties
    number of rows15,343
    number of columns15,343
    nonzeros211,401
    structural full rank?yes
    structural rank15,343
    # of blocks from dmperm1
    # strongly connected comp.1
    explicit zero entries0
    nonzero pattern symmetrysymmetric
    numeric value symmetrysymmetric
    typereal
    structuresymmetric
    Cholesky candidate?no
    positive definite?no

    authorIBM
    editorO. Schenk
    date2006
    kindoptimization problem
    2D/3D problem?no

    Additional fieldssize and type
    bfull 15343-by-1

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD607,917
    Cholesky flop count2.4e+08
    nnz(L+U), no partial pivoting, with AMD1,200,491
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD8,979,605
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD13,215,819

    SVD-based statistics:
    norm(A)375383
    min(svd(A))0.00118691
    cond(A)3.1627e+08
    rank(A)15,343
    sprank(A)-rank(A)0
    null space dimension0
    full numerical rank?yes

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    Schenk_IBMNA/c-47 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.