Matrix: QCD/conf5_0-4x4-10

Description: Quantum chromodynamics conf5.0-00l4x4-1000

QCD/conf5_0-4x4-10 graph QCD/conf5_0-4x4-10 graph
(bipartite graph drawing) (graph drawing of A+A')


QCD/conf5_0-4x4-10 dmperm of QCD/conf5_0-4x4-10

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: QCD
  • Click here for a description of the QCD group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 701 KB. Use UFget(1591) or UFget('QCD/conf5_0-4x4-10') in MATLAB.
  • download in Matrix Market format, file size: 921 KB.
  • download in Rutherford/Boeing format, file size: 596 KB.

    Matrix properties
    number of rows3,072
    number of columns3,072
    nonzeros119,808
    structural full rank?yes
    structural rank3,072
    # of blocks from dmperm2
    # strongly connected comp.1
    explicit zero entries0
    nonzero pattern symmetry 92%
    numeric value symmetry 46%
    typecomplex
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorB. Medeke
    editorR. Boisvert, R. Pozo, K. Remington, B. Miller, R. Lipman, R. Barrett, J. Dongarra
    date1999
    kindtheoretical/quantum chemistry problem
    2D/3D problem?no

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD1,015,776
    Cholesky flop count7.8e+08
    nnz(L+U), no partial pivoting, with AMD2,028,480
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD1,047,318
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD1,789,278

    SVD-based statistics:
    norm(A)6.89933
    min(svd(A))0.00240639
    cond(A)2867.09
    rank(A)3,072
    sprank(A)-rank(A)0
    null space dimension0
    full numerical rank?yes

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    QCD/conf5_0-4x4-10 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.