Matrix: Pajek/football

Description: Pajek network: World Soccer, Paris 1998

Pajek/football graph Pajek/football graph
(bipartite graph drawing) (graph drawing of A+A')


Pajek/football
scc of Pajek/football Pajek/football graph

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Pajek
  • Click here for a description of the Pajek group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 2 KB. Use UFget(1474) or UFget('Pajek/football') in MATLAB.
  • download in Matrix Market format, file size: 1 KB.
  • download in Rutherford/Boeing format, file size: 1 KB.

    Matrix properties
    number of rows35
    number of columns35
    nonzeros118
    # strongly connected comp.35
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typeinteger
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorL. Krempel
    editorV. Batagelj
    date1998
    kinddirected weighted graph
    2D/3D problem?no

    Additional fieldssize and type
    nodenamefull 35-by-3
    coordfull 35-by-2

    Notes:

    ------------------------------------------------------------------------------
    Pajek network converted to sparse adjacency matrix for inclusion in UF sparse 
    matrix collection, Tim Davis.  For Pajek datasets, See V. Batagelj & A. Mrvar,
    http://vlado.fmf.uni-lj.si/pub/networks/data/.                                
    ------------------------------------------------------------------------------
    The original problem had 3D xyz coordinates, but all values of z were equal   
    to 0.5, and have been removed.  This graph has 2D coordinates.                
    

    SVD-based statistics:
    norm(A)23.0386
    min(svd(A))0
    cond(A)Inf
    rank(A)19
    null space dimension16
    full numerical rank?no
    singular value gap2.97543e+13

    singular values (MAT file):click here
    SVD method used:s = svd (full (A))
    status:ok

    Pajek/football svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.