Matrix: Pajek/Lederberg

Description: Pajek network: Lederberg citation network

Pajek/Lederberg graph Pajek/Lederberg graph
(bipartite graph drawing) (graph drawing of A+A')


Pajek/Lederberg
scc of Pajek/Lederberg

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Pajek
  • Click here for a description of the Pajek group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 153 KB. Use UFget(1508) or UFget('Pajek/Lederberg') in MATLAB.
  • download in Matrix Market format, file size: 180 KB.
  • download in Rutherford/Boeing format, file size: 139 KB.

    Matrix properties
    number of rows8,843
    number of columns8,843
    nonzeros41,601
    # strongly connected comp.8,781
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typeinteger
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorE. Garfield
    editorV. Batagelj
    date2002
    kinddirected multigraph
    2D/3D problem?no

    Additional fieldssize and type
    pubyearfull 8843-by-1
    gcsfull 8843-by-1
    nodenamefull 8843-by-23

    Notes:

    ------------------------------------------------------------------------------
    Pajek network converted to sparse adjacency matrix for inclusion in UF sparse 
    matrix collection, Tim Davis.  For Pajek datasets, See V. Batagelj & A. Mrvar,
    http://vlado.fmf.uni-lj.si/pub/networks/data/.                                
    ------------------------------------------------------------------------------
     Articles by and citing J Lederberg, 1945-2002, Wed Jul 31 13:40:22 2002      
    

    SVD-based statistics:
    norm(A)34.8451
    min(svd(A))0
    cond(A)Inf
    rank(A)4,170
    null space dimension4,673
    full numerical rank?no
    singular value gap2.47421e+11

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    Pajek/Lederberg svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.