Matrix: Pajek/GlossGT

Description: Pajek network: graph and digraph glossary

Pajek/GlossGT graph Pajek/GlossGT graph
(bipartite graph drawing) (graph drawing of A+A')


Pajek/GlossGT
scc of Pajek/GlossGT Pajek/GlossGT graph

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Pajek
  • Click here for a description of the Pajek group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 3 KB. Use UFget(1501) or UFget('Pajek/GlossGT') in MATLAB.
  • download in Matrix Market format, file size: 2 KB.
  • download in Rutherford/Boeing format, file size: 2 KB.

    Matrix properties
    number of rows72
    number of columns72
    nonzeros122
    # strongly connected comp.68
    explicit zero entries0
    nonzero pattern symmetry 7%
    numeric value symmetry 7%
    typebinary
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorW. Cherowitzo
    editorV. Batagelj
    date2001
    kinddirected graph
    2D/3D problem?no

    Additional fieldssize and type
    nodenamefull 72-by-19
    coordfull 72-by-2

    Notes:

    ------------------------------------------------------------------------------
    Pajek network converted to sparse adjacency matrix for inclusion in UF sparse 
    matrix collection, Tim Davis.  For Pajek datasets, See V. Batagelj & A. Mrvar,
    http://vlado.fmf.uni-lj.si/pub/networks/data/.                                
    ------------------------------------------------------------------------------
     Bill Cherowitzo: Graph and Digraph Glossary                                  
     http://www-math.cudenver.edu/~wcherowi/courses/m4408/glossary.html           
     Pajek's network: Barbara Zemlji"c, 2. nov 2003                               
    The original problem had 3D xyz coordinates, but all values of z were equal   
    to 0, and have been removed.  This graph has 2D coordinates.                  
    

    SVD-based statistics:
    norm(A)5.40624
    min(svd(A))0
    cond(A)Inf
    rank(A)35
    null space dimension37
    full numerical rank?no
    singular value gap3.16719e+14

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    Pajek/GlossGT svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.