Matrix: Pajek/GD99_b

Description: Pajek network: Graph Drawing contest 1999

Pajek/GD99_b graph
(undirected graph drawing)


Pajek/GD99_b
Pajek/GD99_b graph

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Pajek
  • Click here for a description of the Pajek group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 2 KB. Use UFget(1498) or UFget('Pajek/GD99_b') in MATLAB.
  • download in Matrix Market format, file size: 1 KB.
  • download in Rutherford/Boeing format, file size: 2 KB.

    Matrix properties
    number of rows64
    number of columns64
    nonzeros252
    # strongly connected comp.1
    explicit zero entries0
    nonzero pattern symmetrysymmetric
    numeric value symmetrysymmetric
    typeinteger
    structuresymmetric
    Cholesky candidate?no
    positive definite?no

    authorGraph Drawing Contest
    editorV. Batagelj
    date1999
    kindundirected multigraph
    2D/3D problem?no

    Additional fieldssize and type
    nodenamefull 64-by-5
    coordfull 64-by-3

    Notes:

    ------------------------------------------------------------------------------
    Pajek network converted to sparse adjacency matrix for inclusion in UF sparse 
    matrix collection, Tim Davis.  For Pajek datasets, See V. Batagelj & A. Mrvar,
    http://vlado.fmf.uni-lj.si/pub/networks/data/.                                
    ------------------------------------------------------------------------------
    

    SVD-based statistics:
    norm(A)3.98254
    min(svd(A))1.74874e-17
    cond(A)2.27737e+17
    rank(A)45
    null space dimension19
    full numerical rank?no
    singular value gap2.0601e+14

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    Pajek/GD99_b svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.