Matrix: Pajek/GD96_d

Description: Pajek network: Graph Drawing contest 1996

Pajek/GD96_d graph Pajek/GD96_d graph
(bipartite graph drawing) (graph drawing of A+A')


Pajek/GD96_d
scc of Pajek/GD96_d Pajek/GD96_d graph

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Pajek
  • Click here for a description of the Pajek group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 6 KB. Use UFget(1491) or UFget('Pajek/GD96_d') in MATLAB.
  • download in Matrix Market format, file size: 4 KB.
  • download in Rutherford/Boeing format, file size: 4 KB.

    Matrix properties
    number of rows180
    number of columns180
    nonzeros229
    # strongly connected comp.168
    explicit zero entries0
    nonzero pattern symmetry 1%
    numeric value symmetry 1%
    typebinary
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorGraph Drawing Contest
    editorV. Batagelj
    date1996
    kinddirected graph
    2D/3D problem?no

    Additional fieldssize and type
    nodenamefull 180-by-40
    coordfull 180-by-2

    Notes:

    ------------------------------------------------------------------------------
    Pajek network converted to sparse adjacency matrix for inclusion in UF sparse 
    matrix collection, Tim Davis.  For Pajek datasets, See V. Batagelj & A. Mrvar,
    http://vlado.fmf.uni-lj.si/pub/networks/data/.                                
    ------------------------------------------------------------------------------
    The original problem had 3D xyz coordinates, but all values of z were equal   
    to 0, and have been removed.  This graph has 2D coordinates.                  
    

    SVD-based statistics:
    norm(A)4.89898
    min(svd(A))0
    cond(A)Inf
    rank(A)73
    null space dimension107
    full numerical rank?no
    singular value gap2.51924e+14

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    Pajek/GD96_d svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.