Matrix: Pajek/GD00_a

Description: Pajek network: Graph Drawing contest 2000

Pajek/GD00_a graph Pajek/GD00_a graph
(bipartite graph drawing) (graph drawing of A+A')


Pajek/GD00_a
scc of Pajek/GD00_a Pajek/GD00_a graph

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Pajek
  • Click here for a description of the Pajek group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 11 KB. Use UFget(1475) or UFget('Pajek/GD00_a') in MATLAB.
  • download in Matrix Market format, file size: 6 KB.
  • download in Rutherford/Boeing format, file size: 6 KB.

    Matrix properties
    number of rows352
    number of columns352
    nonzeros458
    # strongly connected comp.352
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typebinary
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorGraph Drawing Contest
    editorV. Batagelj
    date2000
    kinddirected graph
    2D/3D problem?no

    Additional fieldssize and type
    nodenamefull 352-by-96
    coordfull 352-by-2

    Notes:

    ------------------------------------------------------------------------------
    Pajek network converted to sparse adjacency matrix for inclusion in UF sparse 
    matrix collection, Tim Davis.  For Pajek datasets, See V. Batagelj & A. Mrvar,
    http://vlado.fmf.uni-lj.si/pub/networks/data/.                                
    ------------------------------------------------------------------------------
    The original problem had 3D xyz coordinates, but all values of z were equal   
    to 0.5, and have been removed.  This graph has 2D coordinates.                
    

    SVD-based statistics:
    norm(A)7.08211
    min(svd(A))0
    cond(A)Inf
    rank(A)178
    null space dimension174
    full numerical rank?no
    singular value gap1.29723e+14

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    Pajek/GD00_a svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.