Matrix: Pajek/EVA

Description: Pajek network: EVA, corporate inter-relationships

Pajek/EVA graph Pajek/EVA graph
(bipartite graph drawing) (graph drawing of A+A')


Pajek/EVA
scc of Pajek/EVA

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Pajek
  • Click here for a description of the Pajek group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 182 KB. Use UFget(1471) or UFget('Pajek/EVA') in MATLAB.
  • download in Matrix Market format, file size: 79 KB.
  • download in Rutherford/Boeing format, file size: 81 KB.

    Matrix properties
    number of rows8,497
    number of columns8,497
    nonzeros6,726
    # strongly connected comp.8,482
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typebinary
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorK. Norlen, G. Lucas, M. Gebbie, J. Chuang
    editorV. Batagelj
    date2002
    kinddirected graph
    2D/3D problem?no

    Additional fieldssize and type
    nodenamefull 8497-by-85

    Notes:

    ------------------------------------------------------------------------------
    Pajek network converted to sparse adjacency matrix for inclusion in UF sparse 
    matrix collection, Tim Davis.  For Pajek datasets, See V. Batagelj & A. Mrvar,
    http://vlado.fmf.uni-lj.si/pub/networks/data/.                                
    ------------------------------------------------------------------------------
    

    SVD-based statistics:
    norm(A)23.4948
    min(svd(A))0
    cond(A)Inf
    rank(A)1,301
    null space dimension7,196
    full numerical rank?no
    singular value gap5.95299e+12

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    Pajek/EVA svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.