Matrix: Pajek/EAT_SR
Description: Pajek network: Edinburgh Associative Thesaurus (stimulus-response)
(bipartite graph drawing) | (graph drawing of A+A') |
Matrix properties | |
number of rows | 23,219 |
number of columns | 23,219 |
nonzeros | 325,589 |
# strongly connected comp. | 15,466 |
explicit zero entries | 0 |
nonzero pattern symmetry | 12% |
numeric value symmetry | 3% |
type | integer |
structure | unsymmetric |
Cholesky candidate? | no |
positive definite? | no |
author | G. Kiss, C. Armstrong R. Milroy, J. Piper |
editor | V. Batagelj |
date | 1971 |
kind | directed weighted graph |
2D/3D problem? | no |
Additional fields | size and type |
nodename | full 23219-by-20 |
Notes:
------------------------------------------------------------------------------ Pajek network converted to sparse adjacency matrix for inclusion in UF sparse matrix collection, Tim Davis. For Pajek datasets, See V. Batagelj & A. Mrvar, http://vlado.fmf.uni-lj.si/pub/networks/data/. ------------------------------------------------------------------------------ EAT - The Edinburgh Associative Thesaurus / stimulus-response -------------------------------------------------------- The EAT is a database of word association norms. - Original EAT: George Kiss, Christine Armstrong, Robert Milroy and J.R.I. Piper (1968-1971). - MRC Psycholinguistic Database Version modified by: Max Coltheart, S. James, J. Ramshaw, B.M. Philip, B. Reid, J. Benyon-Tinker and E. Doctor; made available by: Philip Quinlan. - The present version was re-structured and documented by Michael Wilson at the Rutherford Appleton Laboratory. http://monkey.cis.rl.ac.uk/Eat/htdocs/eat.zip transformed in Pajek format: V. Batagelj, 31. July 2003 -----
SVD-based statistics: | |
norm(A) | 312.442 |
min(svd(A)) | 0 |
cond(A) | Inf |
rank(A) | 8,210 |
null space dimension | 15,009 |
full numerical rank? | no |
singular value gap | 1.66891e+12 |
singular values (MAT file): | click here |
SVD method used: | s = svd (full (A)) |
status: | ok |
For a description of the statistics displayed above, click here.
Maintained by Tim Davis, last updated 12-Mar-2014.
Matrix pictures by cspy, a MATLAB function in the CSparse package.
Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.