Matrix: Pajek/CSphd

Description: Pajek network: PhD's in computer science

Pajek/CSphd graph Pajek/CSphd graph
(bipartite graph drawing) (graph drawing of A+A')


Pajek/CSphd
scc of Pajek/CSphd

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Pajek
  • Click here for a description of the Pajek group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 27 KB. Use UFget(1458) or UFget('Pajek/CSphd') in MATLAB.
  • download in Matrix Market format, file size: 24 KB.
  • download in Rutherford/Boeing format, file size: 24 KB.

    Matrix properties
    number of rows1,882
    number of columns1,882
    nonzeros1,740
    # strongly connected comp.1,882
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typebinary
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    author
    editorV. Batagelj
    date2006
    kinddirected graph
    2D/3D problem?no

    Additional fieldssize and type
    phdyearfull 1882-by-1
    nodenamefull 1882-by-32

    Notes:

    ------------------------------------------------------------------------------
    Pajek network converted to sparse adjacency matrix for inclusion in UF sparse 
    matrix collection, Tim Davis.  For Pajek datasets, See V. Batagelj & A. Mrvar,
    http://vlado.fmf.uni-lj.si/pub/networks/data/.                                
    ------------------------------------------------------------------------------
    

    SVD-based statistics:
    norm(A)6.7099
    min(svd(A))0
    cond(A)Inf
    rank(A)705
    null space dimension1,177
    full numerical rank?no
    singular value gap1.02236e+14

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    Pajek/CSphd svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.