Matrix: Oberwolfach/bone010

Description: Oberwolfach: 3D trabecular bone

Oberwolfach/bone010 graph
(undirected graph drawing)


Oberwolfach/bone010 dmperm of Oberwolfach/bone010

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Oberwolfach
  • Click here for a description of the Oberwolfach group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 121 MB. Use UFget(1453) or UFget('Oberwolfach/bone010') in MATLAB.
  • download in Matrix Market format, file size: 159 MB.
  • download in Rutherford/Boeing format, file size: 63 MB.

    Matrix properties
    number of rows986,703
    number of columns986,703
    nonzeros47,851,783
    structural full rank?yes
    structural rank986,703
    # of blocks from dmperm2
    # strongly connected comp.2
    explicit zero entries23,814,542
    nonzero pattern symmetrysymmetric
    numeric value symmetrysymmetric
    typereal
    structuresymmetric
    Cholesky candidate?yes
    positive definite?yes

    authorB. van Rietbergen, E. Rudnyi, J. Korvink
    editorE. Rudnyi
    date2006
    kindmodel reduction problem
    2D/3D problem?yes

    Additional fieldssize and type
    Msparse 986703-by-986703
    Bsparse 986703-by-1
    Csparse 3-by-986703
    cnamefull 3-by-8

    Notes:

    Primary matrix in this model reduction problem is the Oberwolfach K matrix
    

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD2,860,657,842
    Cholesky flop count2.5e+13
    nnz(L+U), no partial pivoting, with AMD5,720,328,981
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD3,245,730,289
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD6,002,495,967

    Note that all matrix statistics (except nonzero pattern symmetry) exclude the 23814542 explicit zero entries.

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.