Matrix: Oberwolfach/LF10

Description: Oberwolfach: linear 1D beam

Oberwolfach/LF10 graph
(undirected graph drawing)


Oberwolfach/LF10

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Oberwolfach
  • Click here for a description of the Oberwolfach group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 928 bytes. Use UFget(1438) or UFget('Oberwolfach/LF10') in MATLAB.
  • download in Matrix Market format, file size: 1 KB.
  • download in Rutherford/Boeing format, file size: 1 KB.

    Matrix properties
    number of rows18
    number of columns18
    nonzeros82
    structural full rank?yes
    structural rank18
    # of blocks from dmperm1
    # strongly connected comp.1
    explicit zero entries0
    nonzero pattern symmetrysymmetric
    numeric value symmetrysymmetric
    typereal
    structuresymmetric
    Cholesky candidate?yes
    positive definite?yes

    authorJ. Lienemann, A. Greiner, J. Korvink
    editorE. Rudnyi
    date2004
    kindmodel reduction problem
    2D/3D problem?yes

    Additional fieldssize and type
    Msparse 18-by-18
    Esparse 18-by-18
    Bsparse 18-by-1
    Csparse 1-by-18

    Notes:

    Primary matrix in this model reduction problem is the Oberwolfach K matrix
    

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD58
    Cholesky flop count2.0e+02
    nnz(L+U), no partial pivoting, with AMD98
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD58
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD86

    SVD-based statistics:
    norm(A)333192
    min(svd(A))0.0864259
    cond(A)3.85524e+06
    rank(A)18
    sprank(A)-rank(A)0
    null space dimension0
    full numerical rank?yes

    singular values (MAT file):click here
    SVD method used:s = svd (full (A))
    status:ok

    Oberwolfach/LF10 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.