Matrix: NYPA/Maragal_5

Description: Rank deficient least squares problem, D. Maragal, NY Power Authority

NYPA/Maragal_5 graph
(bipartite graph drawing)


NYPA/Maragal_5 dmperm of NYPA/Maragal_5
scc of NYPA/Maragal_5

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: NYPA
  • Click here for a description of the NYPA group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 375 KB. Use UFget(1888) or UFget('NYPA/Maragal_5') in MATLAB.
  • download in Matrix Market format, file size: 594 KB.
  • download in Rutherford/Boeing format, file size: 508 KB.

    Matrix properties
    number of rows4,654
    number of columns3,320
    nonzeros93,091
    structural full rank?no
    structural rank2,690
    # of blocks from dmperm163
    # strongly connected comp.25
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typereal
    structurerectangular
    Cholesky candidate?no
    positive definite?no

    authorD. Maragal
    editorT. Davis
    date2008
    kindleast squares problem
    2D/3D problem?no

    Additional fieldssize and type
    bfull 4654-by-1

    Notes:

    rank deficient (rank(A) < sprank(A) < size(A,2))
    rank: 2147 sprank: 2690 columns: 3320           
    

    Ordering statistics:result
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD3,147,864
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD3,142,413

    SVD-based statistics:
    norm(A)16.3691
    min(svd(A))2.21291e-31
    cond(A)7.39707e+31
    rank(A)2,147
    sprank(A)-rank(A)543
    null space dimension1,173
    full numerical rank?no
    singular value gap1.80246e+10

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    NYPA/Maragal_5 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.