Matrix: Mittelmann/nug08-3rd
Description: LP lower bounds for quadratic assignment problems
(bipartite graph drawing) |
Matrix properties | |
number of rows | 19,728 |
number of columns | 29,856 |
nonzeros | 148,416 |
structural full rank? | yes |
structural rank | 19,728 |
# of blocks from dmperm | 1 |
# strongly connected comp. | 1 |
explicit zero entries | 0 |
nonzero pattern symmetry | 0% |
numeric value symmetry | 0% |
type | integer |
structure | rectangular |
Cholesky candidate? | no |
positive definite? | no |
author | S. Karisch, F. Rendl |
editor | H. Mittelmann |
date | 1995 |
kind | linear programming problem |
2D/3D problem? | no |
Additional fields | size and type |
b | full 19728-by-1 |
c | full 29856-by-1 |
lo | full 29856-by-1 |
hi | full 29856-by-1 |
z0 | full 1-by-1 |
Notes:
Hans Mittelmann test set, http://plato.asu.edu/ftp/lptestset minimize c'*x, subject to A*x=b and lo <= x <= hi NUG: computing LP lower bounds for quadratic assignment problems. see S.E. KARISCH and F. RENDL. Lower bounds for the quadratic assignment problem via triangle decompositions. Mathematical Programming, 71(2):137-152, 1995. K.G. Ramakrishnan, M.G.C. Resende, B. Ramachandran, and J.F. Pekny, "Tight QAP bounds via linear programming," Combinatorial and Global Optimization, P.M. Pardalos, A. Migdalas, and R.E. Burkard, eds., World Scientific Publishing Co., Singapore, pp. 297-303, 2002.
Ordering statistics: | result |
nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD | 184,473,912 |
nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD | 114,635,182 |
SVD-based statistics: | |
norm(A) | 8.11519 |
min(svd(A)) | 4.76129e-118 |
cond(A) | 1.70441e+118 |
rank(A) | 18,270 |
sprank(A)-rank(A) | 1,458 |
null space dimension | 1,458 |
full numerical rank? | no |
singular value gap | 2.98861e+13 |
singular values (MAT file): | click here |
SVD method used: | s = svd (full (R)) ; where [~,R,E] = spqr (A') with droptol of zero |
status: | ok |
For a description of the statistics displayed above, click here.
Maintained by Tim Davis, last updated 12-Mar-2014.
Matrix pictures by cspy, a MATLAB function in the CSparse package.
Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.