Matrix: MKS/fp

Description: 2-D Fokker Planck eqn, electron dyn. in external field. Dan Smith, MKS Inst.

MKS/fp graph MKS/fp graph
(bipartite graph drawing) (graph drawing of A+A')


MKS/fp

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: MKS
  • Click here for a description of the MKS group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 6 MB. Use UFget(1395) or UFget('MKS/fp') in MATLAB.
  • download in Matrix Market format, file size: 5 MB.
  • download in Rutherford/Boeing format, file size: 5 MB.

    Matrix properties
    number of rows7,548
    number of columns7,548
    nonzeros834,222
    structural full rank?yes
    structural rank7,548
    # of blocks from dmperm1
    # strongly connected comp.1
    explicit zero entries14,331
    nonzero pattern symmetry 76%
    numeric value symmetry 0%
    typereal
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorD. Smith
    editorT. Davis
    date2006
    kindelectromagnetics problem
    2D/3D problem?yes

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD1,441,448
    Cholesky flop count4.6e+08
    nnz(L+U), no partial pivoting, with AMD2,875,348
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD2,567,452
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD6,715,099

    Note that all matrix statistics (except nonzero pattern symmetry) exclude the 14331 explicit zero entries.

    SVD-based statistics:
    norm(A)2.8329e+09
    min(svd(A))0.000590518
    cond(A)4.79731e+12
    rank(A)7,547
    sprank(A)-rank(A)1
    null space dimension1
    full numerical rank?no
    singular value gap6.66485

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    MKS/fp svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.