Matrix: Lourakis/bundle1

Description: Sparse bundle adjustment, 3D vision, M. Lourakis, Greece

Lourakis/bundle1 graph
(undirected graph drawing)


Lourakis/bundle1

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Lourakis
  • Click here for a description of the Lourakis group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 4 MB. Use UFget(1347) or UFget('Lourakis/bundle1') in MATLAB.
  • download in Matrix Market format, file size: 3 MB.
  • download in Rutherford/Boeing format, file size: 2 MB.

    Matrix properties
    number of rows10,581
    number of columns10,581
    nonzeros770,811
    structural full rank?yes
    structural rank10,581
    # of blocks from dmperm1
    # strongly connected comp.1
    explicit zero entries90
    nonzero pattern symmetrysymmetric
    numeric value symmetrysymmetric
    typereal
    structuresymmetric
    Cholesky candidate?yes
    positive definite?yes

    authorM. Lourakis
    editorT. Davis
    date2006
    kindcomputer graphics/vision problem
    2D/3D problem?yes

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD460,630
    Cholesky flop count3.9e+07
    nnz(L+U), no partial pivoting, with AMD910,679
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD3,811,882
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD38,413,165

    Note that all matrix statistics (except nonzero pattern symmetry) exclude the 90 explicit zero entries.

    SVD-based statistics:
    norm(A)6.429e+12
    min(svd(A))6.40186e+09
    cond(A)1004.24
    rank(A)10,581
    sprank(A)-rank(A)0
    null space dimension0
    full numerical rank?yes

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    Lourakis/bundle1 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.