Matrix: LPnetlib/lp_cre_d
Description: Netlib LP problem cre_d: minimize c'*x, where Ax=b, lo<=x<=hi
(bipartite graph drawing) |
Matrix properties | |
number of rows | 8,926 |
number of columns | 73,948 |
nonzeros | 246,614 |
structural full rank? | no |
structural rank | 6,476 |
# of blocks from dmperm | 22 |
# strongly connected comp. | 2,451 |
explicit zero entries | 0 |
nonzero pattern symmetry | 0% |
numeric value symmetry | 0% |
type | real |
structure | rectangular |
Cholesky candidate? | no |
positive definite? | no |
author | J. Kennington |
editor | I. Lustig |
date | 1990 |
kind | linear programming problem |
2D/3D problem? | no |
Additional fields | size and type |
b | full 8926-by-1 |
c | full 73948-by-1 |
lo | full 73948-by-1 |
hi | full 73948-by-1 |
z0 | full 1-by-1 |
Notes:
A Netlib LP problem, in lp/data/kennington. For more information send email to netlib@ornl.gov with the message: send index from lp send readme from lp/data send readme from lp/data/kennington The following are relevant excerpts from lp/data/kennington/readme: The "Kennington" problems: sixteen problems described in "An Empirical Evaluation of the KORBX Algorithms for Military Airlift Applications" by W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, S. J. Wichmann (Operations Research vol. 38, no. 2 (1990), pp. 240-248). The following table gives some statistics for the "Kennington" problems. The number of columns excludes slacks and surpluses. The bounds column tells how many entries appear in the BOUNDS section of the MPS file. The mpc column shows the bytes in the problem after "uncompress" and before "emps"; MPS shows the bytes after "emps". The optimal values were computed by Vanderbei's ALPO, running on an SGI computer (with binary IEEE arithmetic). Name rows columns nonzeros bounds mpc MPS optimal value CRE-A 3517 4067 19054 0 152726 659682 2.3595407e+07 CRE-B 9649 72447 328542 0 2119719 10478735 2.3129640e+07 CRE-C 3069 3678 16922 0 135315 587817 2.5275116e+07 CRE-D 8927 69980 312626 0 2022105 9964196 2.4454970e+07 KEN-07 2427 3602 11981 7204 150525 718748 -6.7952044e+08 KEN-11 14695 21349 70354 42698 928171 4167698 -6.9723823e+09 KEN-13 28633 42659 139834 85318 1836457 8254122 -1.0257395e+10 KEN-18 105128 154699 512719 309398 7138893 29855000 -5.2217025e+10 OSA-07 1119 23949 167643 0 1059475 5388666 5.3572252e+05 OSA-14 2338 52460 367220 0 2359656 11800249 1.1064628e+06 OSA-30 4351 100024 700160 0 4470876 22495351 2.1421399e+06 OSA-60 10281 232966 1630758 0 10377094 52402461 4.0440725e+06 PDS-02 2954 7535 21252 2134 197821 801690 2.8857862e+10 PDS-06 9882 28655 82269 9240 769564 3124272 2.7761038e+10 PDS-10 16559 48763 140063 16148 1313834 5331274 2.6727095e+10 PDS-20 33875 105728 304153 34888 2856653 11550890 2.3821659e+10 Submitted to Netlib by Irv Lustig.
Ordering statistics: | result |
nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD | 49,854,495 |
nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD | 763,531 |
SVD-based statistics: | |
norm(A) | 181.32 |
min(svd(A)) | 0 |
cond(A) | Inf |
rank(A) | 6,468 |
sprank(A)-rank(A) | 8 |
null space dimension | 2,458 |
full numerical rank? | no |
singular value gap | 1.28956e+13 |
singular values (MAT file): | click here |
SVD method used: | s = svd (full (R)) ; where [~,R,E] = spqr (A') with droptol of zero |
status: | ok |
For a description of the statistics displayed above, click here.
Maintained by Tim Davis, last updated 12-Mar-2014.
Matrix pictures by cspy, a MATLAB function in the CSparse package.
Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.