Matrix: LPnetlib/lp_cre_d

Description: Netlib LP problem cre_d: minimize c'*x, where Ax=b, lo<=x<=hi

LPnetlib/lp_cre_d graph
(bipartite graph drawing)


LPnetlib/lp_cre_d dmperm of LPnetlib/lp_cre_d
scc of LPnetlib/lp_cre_d

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: LPnetlib
  • Click here for a description of the LPnetlib group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 333 KB. Use UFget(612) or UFget('LPnetlib/lp_cre_d') in MATLAB.
  • download in Matrix Market format, file size: 665 KB.
  • download in Rutherford/Boeing format, file size: 450 KB.

    Matrix properties
    number of rows8,926
    number of columns73,948
    nonzeros246,614
    structural full rank?no
    structural rank6,476
    # of blocks from dmperm22
    # strongly connected comp.2,451
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typereal
    structurerectangular
    Cholesky candidate?no
    positive definite?no

    authorJ. Kennington
    editorI. Lustig
    date1990
    kindlinear programming problem
    2D/3D problem?no

    Additional fieldssize and type
    bfull 8926-by-1
    cfull 73948-by-1
    lofull 73948-by-1
    hifull 73948-by-1
    z0full 1-by-1

    Notes:

    A Netlib LP problem, in lp/data/kennington.  For more information             
    send email to netlib@ornl.gov with the message:                               
                                                                                  
    	 send index from lp                                                          
    	 send readme from lp/data                                                    
    	 send readme from lp/data/kennington                                         
                                                                                  
    The following are relevant excerpts from lp/data/kennington/readme:           
                                                                                  
                                                                                  
    The "Kennington" problems: sixteen problems described in "An Empirical        
    Evaluation of the KORBX Algorithms for Military Airlift Applications"         
    by W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, S. J.               
    Wichmann (Operations Research vol. 38, no. 2 (1990), pp. 240-248).            
                                                                                  
    The following table gives some statistics for the "Kennington"                
    problems.  The number of columns excludes slacks and surpluses.               
    The bounds column tells how many entries appear in the BOUNDS                 
    section of the MPS file.  The mpc column shows the bytes in                   
    the problem after "uncompress" and before "emps"; MPS shows                   
    the bytes after "emps".  The optimal values were computed by                  
    Vanderbei's ALPO, running on an SGI computer (with binary IEEE                
    arithmetic).                                                                  
                                                                                  
    Name       rows  columns  nonzeros  bounds      mpc      MPS     optimal value
                                                                                  
    CRE-A      3517    4067     19054        0    152726    659682   2.3595407e+07
    CRE-B      9649   72447    328542        0   2119719  10478735   2.3129640e+07
    CRE-C      3069    3678     16922        0    135315    587817   2.5275116e+07
    CRE-D      8927   69980    312626        0   2022105   9964196   2.4454970e+07
    KEN-07     2427    3602     11981     7204    150525    718748  -6.7952044e+08
    KEN-11    14695   21349     70354    42698    928171   4167698  -6.9723823e+09
    KEN-13    28633   42659    139834    85318   1836457   8254122  -1.0257395e+10
    KEN-18   105128  154699    512719   309398   7138893  29855000  -5.2217025e+10
    OSA-07     1119   23949    167643        0   1059475   5388666   5.3572252e+05
    OSA-14     2338   52460    367220        0   2359656  11800249   1.1064628e+06
    OSA-30     4351  100024    700160        0   4470876  22495351   2.1421399e+06
    OSA-60    10281  232966   1630758        0  10377094  52402461   4.0440725e+06
    PDS-02     2954    7535     21252     2134    197821    801690   2.8857862e+10
    PDS-06     9882   28655     82269     9240    769564   3124272   2.7761038e+10
    PDS-10    16559   48763    140063    16148   1313834   5331274   2.6727095e+10
    PDS-20    33875  105728    304153    34888   2856653  11550890   2.3821659e+10
                                                                                  
    Submitted to Netlib by Irv Lustig.                                            
                                                                                  
    

    Ordering statistics:result
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD49,854,495
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD763,531

    SVD-based statistics:
    norm(A)181.32
    min(svd(A))0
    cond(A)Inf
    rank(A)6,468
    sprank(A)-rank(A)8
    null space dimension2,458
    full numerical rank?no
    singular value gap1.28956e+13

    singular values (MAT file):click here
    SVD method used:s = svd (full (R)) ; where [~,R,E] = spqr (A') with droptol of zero
    status:ok

    LPnetlib/lp_cre_d svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.