Matrix: JGD_SL6/D_10
Description: Differentials of the Voronoi complex of perfect forms
(bipartite graph drawing) |
Matrix properties | |
number of rows | 460 |
number of columns | 816 |
nonzeros | 7,614 |
structural full rank? | no |
structural rank | 455 |
# of blocks from dmperm | 2 |
# strongly connected comp. | 5 |
explicit zero entries | 0 |
nonzero pattern symmetry | 0% |
numeric value symmetry | 0% |
type | integer |
structure | rectangular |
Cholesky candidate? | no |
positive definite? | no |
author | P. Elbaz-Vincent |
editor | J.-G. Dumas |
date | 2008 |
kind | combinatorial problem |
2D/3D problem? | no |
Notes:
Differentials of the Voronoi complex of perfect forms from Philippe Elbaz-Vincent, Institut Fourier, Grenoble, France. From Jean-Guillaume Dumas' Sparse Integer Matrix Collection, http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html http://www-fourier.ujf-grenoble.fr/-Informations-personnelles-.html?P=pev D_5 Smith Invariants = [ 1:92 3:2 18:1 ] D_6 Smith Invariants = [ 1:338 2:1 ] D_7 Smith Invariants = [ 1:621 2:5 6:1 60:2 ] D_8 Smith Invariants = [ 1:637 3:3 12:1 ] D_9 Smith Invariants = [ 1:491 ] D_10 Smith Invariants = [ 1:318 2:3 4:2 ] D_11 Smith Invariants = [ 1:129 2:6 6:1 ] Filename in JGD collection: SL6/D_10.sms
Ordering statistics: | result |
nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD | 174,105 |
nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD | 73,854 |
SVD-based statistics: | |
norm(A) | 49.0717 |
min(svd(A)) | 8.83686e-17 |
cond(A) | 5.55306e+17 |
rank(A) | 323 |
sprank(A)-rank(A) | 132 |
null space dimension | 137 |
full numerical rank? | no |
singular value gap | 5.95715e+13 |
singular values (MAT file): | click here |
SVD method used: | s = svd (full (A)) ; |
status: | ok |
For a description of the statistics displayed above, click here.
Maintained by Tim Davis, last updated 12-Mar-2014.
Matrix pictures by cspy, a MATLAB function in the CSparse package.
Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.