Matrix: JGD_Homology/n4c6-b10

Description: Simplicial complexes from Homology from Volkmar Welker.

JGD_Homology/n4c6-b10 graph
(bipartite graph drawing)


JGD_Homology/n4c6-b10

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: JGD_Homology
  • Click here for a description of the JGD_Homology group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 3 MB. Use UFget(2118) or UFget('JGD_Homology/n4c6-b10') in MATLAB.
  • download in Matrix Market format, file size: 5 MB.
  • download in Rutherford/Boeing format, file size: 4 MB.

    Matrix properties
    number of rows132,402
    number of columns186,558
    nonzeros1,456,422
    structural full rank?yes
    structural rank132,402
    # of blocks from dmperm1
    # strongly connected comp.1
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typeinteger
    structurerectangular
    Cholesky candidate?no
    positive definite?no

    authorV. Welker
    editorJ.-G. Dumas
    date2008
    kindcombinatorial problem
    2D/3D problem?no

    Notes:

    Simplicial complexes from Homology from Volkmar Welker.        
    From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,   
    http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html      
                                                                   
    http://www.mathematik.uni-marburg.de/~welker/                  
                                                                   
    Filename in JGD collection: Homology/n4c6.b10.132402x186558.sms
    

    Ordering statistics:result
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD11,828,066,905
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD7,108,992,522

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.