Matrix: JGD_Homology/D6-6

Description: Simplicial complexes from Homology from Volkmar Welker.

JGD_Homology/D6-6 graph
(bipartite graph drawing)


JGD_Homology/D6-6 dmperm of JGD_Homology/D6-6
scc of JGD_Homology/D6-6

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: JGD_Homology
  • Click here for a description of the JGD_Homology group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 673 KB. Use UFget(2052) or UFget('JGD_Homology/D6-6') in MATLAB.
  • download in Matrix Market format, file size: 901 KB.
  • download in Rutherford/Boeing format, file size: 774 KB.

    Matrix properties
    number of rows120,576
    number of columns23,740
    nonzeros146,520
    structural full rank?no
    structural rank18,660
    # of blocks from dmperm2
    # strongly connected comp.75,727
    explicit zero entries360
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typeinteger
    structurerectangular
    Cholesky candidate?no
    positive definite?no

    authorV. Welker
    editorJ.-G. Dumas
    date2008
    kindcombinatorial problem
    2D/3D problem?no

    Additional fieldssize and type
    Tfull 147240-by-3

    Notes:

    Simplicial complexes from Homology from Volkmar Welker.     
    From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,
    http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html   
                                                                
    http://www.mathematik.uni-marburg.de/~welker/               
                                                                
    Filename in JGD collection: Homology/D6-6.sms               
    The original file contains 720 duplicate entries,           
    and is the only file in the JGD collection with             
    duplicates.  The original triplets can be found             
    in Problem.aux.T, where the kth triplet is row k            
    of T: row index T(k,1), column index T(k,2), value T(k,3),  
    so that A = spconvert (Problem.aux.T)                       
    

    Ordering statistics:result
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD1,478,161
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD440,884

    Note that all matrix statistics (except nonzero pattern symmetry) exclude the 360 explicit zero entries.

    SVD-based statistics:
    norm(A)5.47723
    min(svd(A))0
    cond(A)Inf
    rank(A)14,409
    sprank(A)-rank(A)4,251
    null space dimension9,331
    full numerical rank?no
    singular value gap1.94125e+14

    singular values (MAT file):click here
    SVD method used:s = svd (full (R)) ; where [~,R,E] = spqr (A) with droptol of zero
    status:ok

    JGD_Homology/D6-6 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.