Matrix: JGD_Groebner/robot24c1_mat5
Description: Groebner basis from Jean-Charles Fauge`res
(bipartite graph drawing) |
Matrix properties | |
number of rows | 404 |
number of columns | 302 |
nonzeros | 15,118 |
structural full rank? | yes |
structural rank | 302 |
# of blocks from dmperm | 1 |
# strongly connected comp. | 1 |
explicit zero entries | 0 |
nonzero pattern symmetry | 0% |
numeric value symmetry | 0% |
type | integer |
structure | rectangular |
Cholesky candidate? | no |
positive definite? | no |
author | J.-C. Faugeres |
editor | J.-G. Dumas |
date | 2008 |
kind | combinatorial problem |
2D/3D problem? | no |
Notes:
Gro"bner basis from Jean-Charles Fauge`res, From Jean-Guillaume Dumas' Sparse Integer Matrix Collection, http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html http://www-calfor.lip6.fr/~jcf/ Filename in JGD collection: Grobner/robot24c1_mat5
Ordering statistics: | result |
nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD | 41,658 |
nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD | 34,013 |
SVD-based statistics: | |
norm(A) | 2.35579e+06 |
min(svd(A)) | 7.06694e-06 |
cond(A) | 3.33354e+11 |
rank(A) | 302 |
sprank(A)-rank(A) | 0 |
null space dimension | 0 |
full numerical rank? | yes |
singular values (MAT file): | click here |
SVD method used: | s = svd (full (A)) ; |
status: | ok |
For a description of the statistics displayed above, click here.
Maintained by Tim Davis, last updated 12-Mar-2014.
Matrix pictures by cspy, a MATLAB function in the CSparse package.
Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.