Matrix: JGD_Groebner/f855_mat9_I

Description: Groebner basis from Jean-Charles Fauge`res

JGD_Groebner/f855_mat9_I graph
(bipartite graph drawing)


JGD_Groebner/f855_mat9_I

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: JGD_Groebner
  • Click here for a description of the JGD_Groebner group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 625 KB. Use UFget(2003) or UFget('JGD_Groebner/f855_mat9_I') in MATLAB.
  • download in Matrix Market format, file size: 851 KB.
  • download in Rutherford/Boeing format, file size: 503 KB.

    Matrix properties
    number of rows2,456
    number of columns2,511
    nonzeros171,214
    structural full rank?yes
    structural rank2,456
    # of blocks from dmperm1
    # strongly connected comp.1
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typeinteger
    structurerectangular
    Cholesky candidate?no
    positive definite?no

    authorJ.-C. Faugeres
    editorJ.-G. Dumas
    date2008
    kindcombinatorial problem
    2D/3D problem?no

    Notes:

    Gro"bner basis from Jean-Charles Fauge`res,                 
    From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,
    http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html   
                                                                
    http://www-calfor.lip6.fr/~jcf/                             
                                                                
    Filename in JGD collection: Grobner/f855_mat9.I             
    

    Ordering statistics:result
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD2,020,759
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD2,637,282

    SVD-based statistics:
    norm(A)5.89903e+06
    min(svd(A))1.59692e-12
    cond(A)3.69401e+18
    rank(A)2,228
    sprank(A)-rank(A)228
    null space dimension228
    full numerical rank?no
    singular value gap1.01542

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    JGD_Groebner/f855_mat9_I svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.