Matrix: JGD_GL7d/GL7d13
Description: Differentials of the Voronoi complex of perfect forms of rank 7 mod GL_7(Z)
(bipartite graph drawing) |
Matrix properties | |
number of rows | 47,271 |
number of columns | 8,899 |
nonzeros | 356,232 |
structural full rank? | no |
structural rank | 8,897 |
# of blocks from dmperm | 4 |
# strongly connected comp. | 51 |
explicit zero entries | 0 |
nonzero pattern symmetry | 0% |
numeric value symmetry | 0% |
type | integer |
structure | rectangular |
Cholesky candidate? | no |
positive definite? | no |
author | P. Elbaz-Vincent |
editor | J.-G. Dumas |
date | 2008 |
kind | combinatorial problem |
2D/3D problem? | no |
Notes:
Differentials of the Voronoi complex of perfect forms of rank 7 mod GL_7(Z) equivalences, (related to the cohomology of GL_7(Z) and the K-theory of Z). from Philippe Elbaz-Vincent, Institut Fourier, Grenoble, France. From Jean-Guillaume Dumas' Sparse Integer Matrix Collection, http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html http://www-fourier.ujf-grenoble.fr/-Informations-personnelles-.html?P=pev mtx rank n m ker rank/min(n,m) homology 10 1 60 1 59 11 59 1019 60 960 0,98333 0 12 960 8899 1019 7939 0,94210 1 13 7938 47271 8899 39333 0,89201 1 14 39332 171375 47271 132043 0,83205 0 15 132043 460261 171375 328218 0,77049 0 16 328218 955128 460261 626910 0,71311 0 17 626910 1548650 955128 921740 0,65636 0* 18 921740* 1955309 1548650 1033569* 0,60* 1/0* 19 103356(8/9)* 1911130 1955309 87756(2/1)* 0,54* 0/1* 20 877562 1437547 1911130 559985 0,61 0 21 559985 822922 1437547 262937 0,68048 0 22 262937 349443 822922 86506 0,75245 0 23 86505 105054 349443 18549 0,82343 1 24 18549 21074 105054 2525 0,88018 0 25 2525 2798 21074 273 0,90243 0 26 273 305 2798 32 0,89508 0 file size elements rank SF GL7d10 1 x 60 8 1 1 (1) GL7d11 60 x 1019 1513 59 1 (59) GL7d12 1019 x 8899 37519 960 1 (958), 2 (2) GL7d13 8899 x 47271 356232 7938 1 (7937), 2 (1) GL7d14 47271 x 171375 1831183 39332 1 (39300),2 (29),4 (3) GL7d15 171375 x 460261 6080381 132043 1 (131993), 2*??? (46), 6*??? (4) GL7d16 955128 x 460261 14488881 328218 GL7d17 1548650 x 955128 25978098 GL7d18 1955309 x 1548650 35590540 GL7d19 1911130 x 1955309 37322725 GL7d20 1437547 x 1911130 29893084 877562 GL7d21 822922 x 1437547 18174775 559985 GL7d22 349443 x 822922 8251000 262937 GL7d23 105054 x 349443 2695430 86505 1 (86488), 2*??? (12), 6*??? (5) GL7d24 21074 x 105054 593892 18549 1 (18544),2 (4),4 (1) GL7d25 21074 x 2798 81671 2525 1 (2507), 2 (18) GL7d26 2798 x 305 7412 273 1 (258), 2 (7), 6 (7), 36 (1) Filename in JGD collection: GL7d/GL7d13.sms
Ordering statistics: | result |
nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD | 311,455,722 |
nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD | 33,885,664 |
SVD-based statistics: | |
norm(A) | 15.2321 |
min(svd(A)) | 0 |
cond(A) | Inf |
rank(A) | 7,938 |
sprank(A)-rank(A) | 959 |
null space dimension | 961 |
full numerical rank? | no |
singular value gap | 1.544e+13 |
singular values (MAT file): | click here |
SVD method used: | s = svd (full (R)) ; where [~,R,E] = spqr (A) with droptol of zero |
status: | ok |
For a description of the statistics displayed above, click here.
Maintained by Tim Davis, last updated 12-Mar-2014.
Matrix pictures by cspy, a MATLAB function in the CSparse package.
Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.