Matrix: JGD_GL6/GL6_D_9

Description: Differentials of the Voronoi complex of perfect forms of rank 6 mod GL_6(Z),

JGD_GL6/GL6_D_9 graph
(bipartite graph drawing)


JGD_GL6/GL6_D_9 dmperm of JGD_GL6/GL6_D_9
scc of JGD_GL6/GL6_D_9

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: JGD_GL6
  • Click here for a description of the JGD_GL6 group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 11 KB. Use UFget(1981) or UFget('JGD_GL6/GL6_D_9') in MATLAB.
  • download in Matrix Market format, file size: 14 KB.
  • download in Rutherford/Boeing format, file size: 11 KB.

    Matrix properties
    number of rows340
    number of columns545
    nonzeros4,349
    structural full rank?no
    structural rank337
    # of blocks from dmperm3
    # strongly connected comp.5
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typeinteger
    structurerectangular
    Cholesky candidate?no
    positive definite?no

    authorP. Elbaz-Vincent
    editorJ.-G. Dumas
    date2008
    kindcombinatorial problem
    2D/3D problem?no

    Notes:

    Differentials of the Voronoi complex of perfect forms of rank 6 mod GL_6(Z),
    from Philippe Elbaz-Vincent, Institut Fourier, Grenoble, France.            
                                                                                
    From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,                
    http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html                   
                                                                                
    http://www-fourier.ujf-grenoble.fr/-Informations-personnelles-.html?P=pev   
                                                                                
    D_6  Smith Invariants = [ 1:156 ]                                           
    D_7  Smith Invariants = [ 1:307 2:3 60:2 ]                                  
    D_8  Smith Invariants = [ 1:320 2:1 6:2 12:1 ]                              
    D_9  Smith Invariants = [ 1:217 2:3 ]                                       
    D_10 Smith Invariants = [ 1:120 ]                                           
                                                                                
    Filename in JGD collection: GL6/D_9.sms                                     
    

    Ordering statistics:result
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD81,508
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD41,483

    SVD-based statistics:
    norm(A)10.7893
    min(svd(A))9.81336e-32
    cond(A)1.09945e+32
    rank(A)220
    sprank(A)-rank(A)117
    null space dimension120
    full numerical rank?no
    singular value gap2.28423e+14

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    JGD_GL6/GL6_D_9 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.