Matrix: JGD_Franz/Franz6

Description: Cohomology of various rings, from Matthias Franz, Univ. Konstanz, Germany

JGD_Franz/Franz6 graph
(bipartite graph drawing)


JGD_Franz/Franz6

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: JGD_Franz
  • Click here for a description of the JGD_Franz group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 88 KB. Use UFget(1959) or UFget('JGD_Franz/Franz6') in MATLAB.
  • download in Matrix Market format, file size: 132 KB.
  • download in Rutherford/Boeing format, file size: 103 KB.

    Matrix properties
    number of rows7,576
    number of columns3,016
    nonzeros45,456
    structural full rank?yes
    structural rank3,016
    # of blocks from dmperm1
    # strongly connected comp.1
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typeinteger
    structurerectangular
    Cholesky candidate?no
    positive definite?no

    authorM. Franz
    editorJ.-G. Dumas
    date2008
    kindcombinatorial problem
    2D/3D problem?no

    Notes:

    Cohomology of various rings, from Matthias Franz, Univ. Konstanz, Germany
    From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,             
    http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html                
                                                                             
    Filename in JGD collection: Franz/7576x3016                              
    

    Ordering statistics:result
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD12,024,128
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD2,768,553

    SVD-based statistics:
    norm(A)9.38083
    min(svd(A))3.56274e-17
    cond(A)2.63304e+17
    rank(A)2,327
    sprank(A)-rank(A)689
    null space dimension689
    full numerical rank?no
    singular value gap2.45144e+13

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    JGD_Franz/Franz6 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.