Matrix: JGD_Franz/Franz5

Description: Cohomology of various rings, from Matthias Franz, Univ. Konstanz, Germany

JGD_Franz/Franz5 graph
(bipartite graph drawing)


JGD_Franz/Franz5

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: JGD_Franz
  • Click here for a description of the JGD_Franz group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 83 KB. Use UFget(1958) or UFget('JGD_Franz/Franz5') in MATLAB.
  • download in Matrix Market format, file size: 123 KB.
  • download in Rutherford/Boeing format, file size: 98 KB.

    Matrix properties
    number of rows7,382
    number of columns2,882
    nonzeros44,056
    structural full rank?yes
    structural rank2,882
    # of blocks from dmperm1
    # strongly connected comp.1
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typeinteger
    structurerectangular
    Cholesky candidate?no
    positive definite?no

    authorM. Franz
    editorJ.-G. Dumas
    date2008
    kindcombinatorial problem
    2D/3D problem?no

    Notes:

    Cohomology of various rings, from Matthias Franz, Univ. Konstanz, Germany
    From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,             
    http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html                
                                                                             
    Filename in JGD collection: Franz/7382x2882                              
    

    Ordering statistics:result
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD10,665,812
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD2,403,365

    SVD-based statistics:
    norm(A)12.3288
    min(svd(A))4.79319e-18
    cond(A)2.57215e+18
    rank(A)2,229
    sprank(A)-rank(A)653
    null space dimension653
    full numerical rank?no
    singular value gap3.54959e+13

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    JGD_Franz/Franz5 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.