Matrix: JGD_BIBD/bibd_17_8

Description: Balanced Incomplete Block Design from Mark Giesbrecht, Univ. of Waterloo

JGD_BIBD/bibd_17_8 graph
(bipartite graph drawing)


JGD_BIBD/bibd_17_8

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: JGD_BIBD
  • Click here for a description of the JGD_BIBD group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 517 KB. Use UFget(1933) or UFget('JGD_BIBD/bibd_17_8') in MATLAB.
  • download in Matrix Market format, file size: 1 MB.
  • download in Rutherford/Boeing format, file size: 467 KB.

    Matrix properties
    number of rows136
    number of columns24,310
    nonzeros680,680
    structural full rank?yes
    structural rank136
    # of blocks from dmperm1
    # strongly connected comp.1
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typebinary
    structurerectangular
    Cholesky candidate?no
    positive definite?no

    authorM. Giesbrecht
    editorJ.-G. Dumas
    date2008
    kindcombinatorial problem
    2D/3D problem?no

    Notes:

    Balanced Incomplete Block Design from Mark Giesbrecht, Univ. of Waterloo
    From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,            
    http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html               
                                                                            
    Filename in JGD collection: BIBD/bibd_17_8_136x24310.sms                
    

    Ordering statistics:result
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD2,903,158
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD9,316

    SVD-based statistics:
    norm(A)374.353
    min(svd(A))41.4246
    cond(A)9.03696
    rank(A)136
    sprank(A)-rank(A)0
    null space dimension0
    full numerical rank?yes

    singular values (MAT file):click here
    SVD method used:s = svd (full (R)) ; where [~,R,E] = spqr (A') with droptol of zero
    status:ok

    JGD_BIBD/bibd_17_8 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.