Matrix: IPSO/TSC_OPF_1047

Description: Power simulation matrix, Li Peijie, Inst. of Power Systems, Guangxi Univ.

IPSO/TSC_OPF_1047 graph
(undirected graph drawing)


IPSO/TSC_OPF_1047 dmperm of IPSO/TSC_OPF_1047
scc of IPSO/TSC_OPF_1047

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: IPSO
  • Click here for a description of the IPSO group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 15 MB. Use UFget(2539) or UFget('IPSO/TSC_OPF_1047') in MATLAB.
  • download in Matrix Market format, file size: 12 MB.
  • download in Rutherford/Boeing format, file size: 10 MB.

    Matrix properties
    number of rows8,140
    number of columns8,140
    nonzeros2,012,833
    structural full rank?yes
    structural rank8,140
    # of blocks from dmperm2
    # strongly connected comp.2
    explicit zero entries4,069
    nonzero pattern symmetrysymmetric
    numeric value symmetrysymmetric
    typereal
    structuresymmetric
    Cholesky candidate?no
    positive definite?no

    authorL. Peijie
    editorJ. Hogg
    date2011
    kindpower network problem
    2D/3D problem?no

    Additional fieldssize and type
    bfull 8140-by-1

    Notes:

    Three different kinds of optimization methods (OPF, TSCOPF, HTC)
    applied to power system simulation.  All matrices are symmetric 
    indefinite.  From Li Peijie, Institute of Power Systems,        
    Guangxi University (beyondpeijie at gxu.edu.cn).  Collected by  
    Jonathan Hogg, Rutherford Appleton Laboratory, Oxfordshire, UK. 
    

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD2,483,695
    Cholesky flop count2.3e+09
    nnz(L+U), no partial pivoting, with AMD4,959,250
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD3,241,745
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD6,638,511

    Note that all matrix statistics (except nonzero pattern symmetry) exclude the 4069 explicit zero entries.

    SVD-based statistics:
    norm(A)41293.3
    min(svd(A))1.25023e-05
    cond(A)3.30284e+09
    rank(A)8,140
    sprank(A)-rank(A)0
    null space dimension0
    full numerical rank?yes

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    IPSO/TSC_OPF_1047 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.