Matrix: Grund/meg4

Description: Unsymmetric Matrix meg4, 4MB RAM simulation, F. Grund, Oct 1990.

Grund/meg4 graph
(undirected graph drawing)


Grund/meg4 dmperm of Grund/meg4
scc of Grund/meg4

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Grund
  • Click here for a description of the Grund group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 92 KB. Use UFget(466) or UFget('Grund/meg4') in MATLAB.
  • download in Matrix Market format, file size: 95 KB.
  • download in Rutherford/Boeing format, file size: 76 KB.

    Matrix properties
    number of rows5,860
    number of columns5,860
    nonzeros25,258
    structural full rank?yes
    structural rank5,860
    # of blocks from dmperm1,412
    # strongly connected comp.1,318
    explicit zero entries21,584
    nonzero pattern symmetrysymmetric
    numeric value symmetrysymmetric
    typereal
    structuresymmetric
    Cholesky candidate?no
    positive definite?no

    authorF. Grund
    editorF. Grund
    date1997
    kindcircuit simulation problem
    2D/3D problem?no

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD21,670
    Cholesky flop count1.2e+05
    nnz(L+U), no partial pivoting, with AMD37,480
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD1,204,046
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD2,114,787

    Note that all matrix statistics (except nonzero pattern symmetry) exclude the 21584 explicit zero entries.

    SVD-based statistics:
    norm(A)212573
    min(svd(A))5.07099e-06
    cond(A)4.19194e+10
    rank(A)5,860
    sprank(A)-rank(A)0
    null space dimension0
    full numerical rank?yes

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    Grund/meg4 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.