Matrix: Grund/d_dyn

Description: Unsymmetric Matrix d_dyn, F. Grund, Dec 1994.

Grund/d_dyn graph Grund/d_dyn graph
(bipartite graph drawing) (graph drawing of A+A')


Grund/d_dyn dmperm of Grund/d_dyn

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Grund
  • Click here for a description of the Grund group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 2 KB. Use UFget(462) or UFget('Grund/d_dyn') in MATLAB.
  • download in Matrix Market format, file size: 2 KB.
  • download in Rutherford/Boeing format, file size: 2 KB.

    Matrix properties
    number of rows87
    number of columns87
    nonzeros230
    structural full rank?yes
    structural rank87
    # of blocks from dmperm19
    # strongly connected comp.1
    explicit zero entries8
    nonzero pattern symmetry 8%
    numeric value symmetry 2%
    typereal
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorF. Grund
    editorF. Grund
    date1997
    kindchemical process simulation problem
    2D/3D problem?no

    Additional fieldssize and type
    bfull 87-by-1

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD917
    Cholesky flop count1.4e+04
    nnz(L+U), no partial pivoting, with AMD1,747
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD239
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD431

    Note that all matrix statistics (except nonzero pattern symmetry) exclude the 8 explicit zero entries.

    SVD-based statistics:
    norm(A)112.905
    min(svd(A))1.52251e-05
    cond(A)7.41575e+06
    rank(A)87
    sprank(A)-rank(A)0
    null space dimension0
    full numerical rank?yes

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    Grund/d_dyn svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.