Matrix: Grund/bayer10

Description: Unsymmetric Matrix bayer10, Bayer AG, F. Grund, Jul 1995.

Grund/bayer10 graph Grund/bayer10 graph
(bipartite graph drawing) (graph drawing of A+A')


Grund/bayer10 dmperm of Grund/bayer10

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Grund
  • Click here for a description of the Grund group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 397 KB. Use UFget(461) or UFget('Grund/bayer10') in MATLAB.
  • download in Matrix Market format, file size: 657 KB.
  • download in Rutherford/Boeing format, file size: 546 KB.

    Matrix properties
    number of rows13,436
    number of columns13,436
    nonzeros71,594
    structural full rank?yes
    structural rank13,436
    # of blocks from dmperm2,545
    # strongly connected comp.1
    explicit zero entries23,332
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typereal
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorBayer
    editorF. Grund
    date1997
    kindchemical process simulation problem
    2D/3D problem?no

    Additional fieldssize and type
    bfull 13436-by-1

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD12,726,035
    Cholesky flop count4.0e+10
    nnz(L+U), no partial pivoting, with AMD25,438,634
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD170,063
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD385,588

    Note that all matrix statistics (except nonzero pattern symmetry) exclude the 23332 explicit zero entries.

    SVD-based statistics:
    norm(A)14118.9
    min(svd(A))4.46682e-10
    cond(A)3.16084e+13
    rank(A)13,360
    sprank(A)-rank(A)76
    null space dimension76
    full numerical rank?no
    singular value gap1.11094

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:SVD did not converge.

    Grund/bayer10 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.