Matrix: Grund/bayer09

Description: Unsymmetric Matrix bayer09, Bayer AG, F. Grund, May 1995.

Grund/bayer09 graph Grund/bayer09 graph
(bipartite graph drawing) (graph drawing of A+A')


Grund/bayer09 dmperm of Grund/bayer09
scc of Grund/bayer09

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Grund
  • Click here for a description of the Grund group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 84 KB. Use UFget(460) or UFget('Grund/bayer09') in MATLAB.
  • download in Matrix Market format, file size: 139 KB.
  • download in Rutherford/Boeing format, file size: 110 KB.

    Matrix properties
    number of rows3,083
    number of columns3,083
    nonzeros11,767
    structural full rank?yes
    structural rank3,083
    # of blocks from dmperm1,872
    # strongly connected comp.2
    explicit zero entries9,449
    nonzero pattern symmetry 2%
    numeric value symmetry 0%
    typereal
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorBayer
    editorF. Grund
    date1997
    kindchemical process simulation problem
    2D/3D problem?no

    Additional fieldssize and type
    bfull 3083-by-1

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD488,537
    Cholesky flop count2.8e+08
    nnz(L+U), no partial pivoting, with AMD973,991
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD21,459
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD48,212

    Note that all matrix statistics (except nonzero pattern symmetry) exclude the 9449 explicit zero entries.

    SVD-based statistics:
    norm(A)1.20638e+09
    min(svd(A))5.3079e-12
    cond(A)2.27279e+20
    rank(A)2,692
    sprank(A)-rank(A)391
    null space dimension391
    full numerical rank?no
    singular value gap1.00347

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:SVD did not converge.

    Grund/bayer09 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.