Matrix: Grund/bayer06

Description: Unsymmetric Matrix bayer06, Bayer AG, F. Grund, Oct 1995.

Grund/bayer06 graph Grund/bayer06 graph
(bipartite graph drawing) (graph drawing of A+A')


Grund/bayer06 dmperm of Grund/bayer06

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Grund
  • Click here for a description of the Grund group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 66 KB. Use UFget(457) or UFget('Grund/bayer06') in MATLAB.
  • download in Matrix Market format, file size: 131 KB.
  • download in Rutherford/Boeing format, file size: 89 KB.

    Matrix properties
    number of rows3,008
    number of columns3,008
    nonzeros20,715
    structural full rank?yes
    structural rank3,008
    # of blocks from dmperm1,273
    # strongly connected comp.1
    explicit zero entries6,861
    nonzero pattern symmetry 1%
    numeric value symmetry 0%
    typereal
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorBayer
    editorF. Grund
    date1997
    kindchemical process simulation problem
    2D/3D problem?no

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD608,569
    Cholesky flop count3.8e+08
    nnz(L+U), no partial pivoting, with AMD1,214,130
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD109,690
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD193,621

    Note that all matrix statistics (except nonzero pattern symmetry) exclude the 6861 explicit zero entries.

    SVD-based statistics:
    norm(A)3.23917e+08
    min(svd(A))5.97111e-16
    cond(A)5.42474e+23
    rank(A)2,449
    sprank(A)-rank(A)559
    null space dimension559
    full numerical rank?no
    singular value gap1.00869

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:SVD did not converge.

    Grund/bayer06 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.