Matrix: Goodwin/rim

Description: FEM, fluid mechanics problem. From Ralph Goodwin, Univ. Illinois

Goodwin/rim graph Goodwin/rim graph
(bipartite graph drawing) (graph drawing of A+A')


Goodwin/rim dmperm of Goodwin/rim
scc of Goodwin/rim

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Goodwin
  • Click here for a description of the Goodwin group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 8 MB. Use UFget(447) or UFget('Goodwin/rim') in MATLAB.
  • download in Matrix Market format, file size: 12 MB.
  • download in Rutherford/Boeing format, file size: 10 MB.

    Matrix properties
    number of rows22,560
    number of columns22,560
    nonzeros1,014,951
    structural full rank?yes
    structural rank22,560
    # of blocks from dmperm2
    # strongly connected comp.2
    explicit zero entries0
    nonzero pattern symmetry 64%
    numeric value symmetry 0%
    typereal
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorR. Goodwin
    editorT. Davis
    date1995
    kindcomputational fluid dynamics problem
    2D/3D problem?yes

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD1,927,907
    Cholesky flop count2.6e+08
    nnz(L+U), no partial pivoting, with AMD3,833,254
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD4,940,213
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD16,753,049

    SVD-based statistics:
    norm(A)82346.3
    min(svd(A))9.29177e-18
    cond(A)8.86228e+21
    rank(A)22,479
    sprank(A)-rank(A)81
    null space dimension81
    full numerical rank?no
    singular value gap1.00668

    singular values (MAT file):click here
    SVD method used:s = svd (full (R)) ; where [~,R,E] = spqr (A) with droptol of zero
    status:ok

    Goodwin/rim svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.