Matrix: GHS_indef/helm3d01

Description: Helmholtz eq. on a unit cube: -div grad u -10000 u = 1, B.C. u = 0

GHS_indef/helm3d01 graph
(undirected graph drawing)


GHS_indef/helm3d01

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: GHS_indef
  • Click here for a description of the GHS_indef group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 4 MB. Use UFget(1237) or UFget('GHS_indef/helm3d01') in MATLAB.
  • download in Matrix Market format, file size: 3 MB.
  • download in Rutherford/Boeing format, file size: 3 MB.

    Matrix properties
    number of rows32,226
    number of columns32,226
    nonzeros428,444
    structural full rank?yes
    structural rank32,226
    # of blocks from dmperm1
    # strongly connected comp.1
    explicit zero entries0
    nonzero pattern symmetrysymmetric
    numeric value symmetrysymmetric
    typereal
    structuresymmetric
    Cholesky candidate?no
    positive definite?no

    author
    editorN. Gould, Y. Hu, J. Scott
    date2004
    kind2D/3D problem
    2D/3D problem?yes

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD7,709,021
    Cholesky flop count8.3e+09
    nnz(L+U), no partial pivoting, with AMD15,385,816
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD23,546,358
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD45,839,308

    SVD-based statistics:
    norm(A)0.505218
    min(svd(A))2.06052e-06
    cond(A)245190
    rank(A)32,226
    sprank(A)-rank(A)0
    null space dimension0
    full numerical rank?yes

    singular values (MAT file):click here
    SVD method used:s = svd (full (A))
    status:ok

    GHS_indef/helm3d01 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.