Matrix: Dehghani/light_in_tissue
Description: Light transport in soft tissue. Hamid Dehghani, Univ. Exeter, UK
(undirected graph drawing) |
Matrix properties | |
number of rows | 29,282 |
number of columns | 29,282 |
nonzeros | 406,084 |
structural full rank? | yes |
structural rank | 29,282 |
# of blocks from dmperm | 1 |
# strongly connected comp. | 1 |
explicit zero entries | 0 |
nonzero pattern symmetry | symmetric |
numeric value symmetry | 0% |
type | complex |
structure | unsymmetric |
Cholesky candidate? | no |
positive definite? | no |
author | H. Dehghani |
editor | T. Davis |
date | 2007 |
kind | electromagnetics problem |
2D/3D problem? | yes |
Additional fields | size and type |
b | sparse 29282-by-1 |
Q | sparse 14641-by-1 |
nodes | full 14641-by-3 |
elements | full 28800-by-3 |
Notes:
% The problem is solving the fluence (PHI) of light in soft tissue using % a simplified 3rd spherical harmonic expansion (SPN3) of the Radiative % Transport Equation. There are two coupled equations to solve: % M1*phi1 = Q + (M2*phi2) eq(1) % (M4 - (M3*inv(M1)*M2))*phi2 = -2/3*Q + M3*inv(M1)*Q eq(2) % PHI = phi1 - (1/3).*phi2 eq(3) Problem = UFget ('Dehghani/light_in_tissue') ; A = Problem.A ; % get the problem Q = Problem.aux.Q ; k = size (A,1) / 2 ; M1 = A (1:k,1:k) ; M2 = A (1:k,k+1:end) ; M3 = A (k+1:end, 1:k) ; M4 = A (k+1:end, k+1:end) ; elements = Problem.aux.elements ; nodes = Problem.aux.nodes ; Q2 = (-(2/3).*Q) + (M3*(M1\Q)) ; % create rhs for equation 2 Q2 = [sparse(k,1) ; Q2] ; phi2 = A\Q2 ; % solve for phi2 phi2 = phi2 (end/2+1:end,:) ; Q1 = Q + M2*phi2 ; % calculate rhs for equation 1 phi1 = M1\Q1; % solve for phi1 PHI = phi1 - (1/3).*phi2; figure (1) ; clf % plot results trisurf(elements, nodes(:,1), nodes(:,2), nodes(:,3), log(abs(PHI))) ; shading interp ; view (2) ; colorbar('horiz') ; axis equal ; axis off ; colormap hot ;
Ordering statistics: | result |
nnz(chol(P*(A+A'+s*I)*P')) with AMD | 1,390,043 |
Cholesky flop count | 2.0e+08 |
nnz(L+U), no partial pivoting, with AMD | 2,750,804 |
nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD | 2,925,391 |
nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD | 5,672,099 |
SVD-based statistics: | |
norm(A) | 2.66355 |
min(svd(A)) | 0.000340525 |
cond(A) | 7821.9 |
rank(A) | 29,282 |
sprank(A)-rank(A) | 0 |
null space dimension | 0 |
full numerical rank? | yes |
singular values (MAT file): | click here |
SVD method used: | s = svd (full (A)) |
status: | ok |
For a description of the statistics displayed above, click here.
Maintained by Tim Davis, last updated 12-Mar-2014.
Matrix pictures by cspy, a MATLAB function in the CSparse package.
Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.