Matrix: Bindel/ted_A_unscaled

Description: FEM, coupled linear thermoeslasticity eqns on a bar. D Bindel, UC Berkeley

Bindel/ted_A_unscaled graph Bindel/ted_A_unscaled graph
(bipartite graph drawing) (graph drawing of A+A')


Bindel/ted_A_unscaled dmperm of Bindel/ted_A_unscaled

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Bindel
  • Click here for a description of the Bindel group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 1 MB. Use UFget(1408) or UFget('Bindel/ted_A_unscaled') in MATLAB.
  • download in Matrix Market format, file size: 3 MB.
  • download in Rutherford/Boeing format, file size: 2 MB.

    Matrix properties
    number of rows10,605
    number of columns10,605
    nonzeros424,587
    structural full rank?yes
    structural rank10,605
    # of blocks from dmperm4,244
    # strongly connected comp.1
    explicit zero entries0
    nonzero pattern symmetry 57%
    numeric value symmetry 11%
    typereal
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorD. Bindel
    editorT. Davis
    date2006
    kindthermal problem
    2D/3D problem?yes

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD510,205
    Cholesky flop count2.6e+07
    nnz(L+U), no partial pivoting, with AMD1,009,805
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD4,343,971
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD5,651,891

    SVD-based statistics:
    norm(A)2.22515e+12
    min(svd(A))2.14432e-05
    cond(A)1.03769e+17
    rank(A)6,363
    sprank(A)-rank(A)4,242
    null space dimension4,242
    full numerical rank?no
    singular value gap27.3551

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    Bindel/ted_A_unscaled svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.