Matrix: AG-Monien/cage
Description: cage graph sequence
(undirected graph drawing) |
Matrix properties | |
number of rows | 366 |
number of columns | 366 |
nonzeros | 5,124 |
# strongly connected comp. | 1 |
explicit zero entries | 0 |
nonzero pattern symmetry | symmetric |
numeric value symmetry | symmetric |
type | binary |
structure | symmetric |
Cholesky candidate? | no |
positive definite? | no |
author | R. Diekmann, R. Preis |
editor | R. Diekmann, R. Preis |
date | 1998 |
kind | undirected graph sequence |
2D/3D problem? | no |
Additional fields | size and type |
G | cell 45-by-1 |
Gname | cell 45-by-1 |
Notes:
AG-Monien Graph Collection, Ralf Diekmann and Robert Preis http://www2.cs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/graphs.html A collection of test graphs from various sources. Many of the graphs include XY or XYZ coordinates. This set also includes some graphs from the Harwell-Boeing collection, the NASA matrices, and some random matrices which are not included here in the AG-Monien/ group of the UF Collection. In addition, two graphs already appear in other groups: AG-Monien/big : same as Nasa/barth5, Pothen/barth5 (not included here) AG-Monien/cage_3_11 : same as Pajek/GD98_c (included here) The AG-Monien/GRID subset is not included. It contains square grids that are already well-represented in the UF Collection. Six of the problem sets are included as sequences, each sequence being a single problem instance in the UF Collection: bfly: 10 butterfly graphs 3..12 cage: 45 cage graphs 3..12 cca: 10 cube-connected cycle graphs, no wrap ccc: 10 cube-connected cycle graphs, with wrap debr: 18 De Bruijn graphs se: 13 shuffle-exchange graphs Problem.aux.G{:} are the graphs in these 6 sequences. Problem.aux.Gname{:} are the original names of each graph, and Problemm.aux.Gcoord{:} are the xy or xyz coordinates of each node, if present. Graphs in the cage sequence: 1 : cage_3_5 : 10 nodes 15 edges 30 nonzeros 2 : cage_3_6 : 14 nodes 21 edges 42 nonzeros 3 : cage_3_7 : 24 nodes 36 edges 72 nonzeros 4 : cage_3_8 : 30 nodes 45 edges 90 nonzeros 5 : cage_3_9.1 : 58 nodes 87 edges 174 nonzeros 6 : cage_3_9.2 : 58 nodes 87 edges 174 nonzeros 7 : cage_3_9.3 : 58 nodes 87 edges 174 nonzeros 8 : cage_3_9.4 : 58 nodes 87 edges 174 nonzeros 9 : cage_3_9.5 : 58 nodes 87 edges 174 nonzeros 10 : cage_3_9.6 : 58 nodes 87 edges 174 nonzeros 11 : cage_3_9.7 : 58 nodes 87 edges 174 nonzeros 12 : cage_3_9.8 : 58 nodes 87 edges 174 nonzeros 13 : cage_3_9.9 : 58 nodes 87 edges 174 nonzeros 14 : cage_3_9.10 : 58 nodes 87 edges 174 nonzeros 15 : cage_3_9.11 : 58 nodes 87 edges 174 nonzeros 16 : cage_3_9.12 : 58 nodes 87 edges 174 nonzeros 17 : cage_3_9.13 : 58 nodes 87 edges 174 nonzeros 18 : cage_3_9.14 : 58 nodes 87 edges 174 nonzeros 19 : cage_3_9.15 : 58 nodes 87 edges 174 nonzeros 20 : cage_3_9.16 : 58 nodes 87 edges 174 nonzeros 21 : cage_3_9.17 : 58 nodes 87 edges 174 nonzeros 22 : cage_3_9.18 : 58 nodes 87 edges 174 nonzeros 23 : cage_3_10.1 : 70 nodes 105 edges 210 nonzeros 24 : cage_3_10.2 : 70 nodes 105 edges 210 nonzeros 25 : cage_3_10.3 : 70 nodes 105 edges 210 nonzeros 26 : cage_3_11 : 112 nodes 168 edges 336 nonzeros 27 : cage_3_12 : 126 nodes 189 edges 378 nonzeros 28 : cage_3_13 : 272 nodes 408 edges 816 nonzeros 29 : cage_3_14 : 406 nodes 609 edges 1218 nonzeros 30 : cage_3_15 : 620 nodes 930 edges 1860 nonzeros 31 : cage_4_5 : 19 nodes 38 edges 76 nonzeros 32 : cage_4_6 : 26 nodes 52 edges 104 nonzeros 33 : cage_4_7 : 76 nodes 152 edges 304 nonzeros 34 : cage_4_8 : 80 nodes 160 edges 320 nonzeros 35 : cage_5_5 : 30 nodes 75 edges 150 nonzeros 36 : cage_5_6 : 42 nodes 105 edges 210 nonzeros 37 : cage_6_6 : 62 nodes 186 edges 372 nonzeros 38 : cage_7_5 : 50 nodes 175 edges 350 nonzeros 39 : cage_8_5 : 94 nodes 376 edges 752 nonzeros 40 : cage_8_6 : 114 nodes 456 edges 912 nonzeros 41 : cage_9_5 : 118 nodes 531 edges 1062 nonzeros 42 : cage_9_6 : 146 nodes 657 edges 1314 nonzeros 43 : cage_10_6 : 182 nodes 910 edges 1820 nonzeros 44 : cage_12_6 : 266 nodes 1596 edges 3192 nonzeros 45 : cage_14_6 : 366 nodes 2562 edges 5124 nonzeros The primary graph (Problem.A) in this sequence is the last graph in the sequence.
SVD-based statistics: | |
norm(A) | 14 |
min(svd(A)) | 3.60555 |
cond(A) | 3.8829 |
rank(A) | 366 |
null space dimension | 0 |
full numerical rank? | yes |
singular values (MAT file): | click here |
SVD method used: | s = svd (full (A)) ; |
status: | ok |
For a description of the statistics displayed above, click here.
Maintained by Tim Davis, last updated 12-Mar-2014.
Matrix pictures by cspy, a MATLAB function in the CSparse package.
Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.