Matrix: AG-Monien/cage

Description: cage graph sequence

AG-Monien/cage graph
(undirected graph drawing)


AG-Monien/cage

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: AG-Monien
  • Click here for a description of the AG-Monien group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 55 KB. Use UFget(2436) or UFget('AG-Monien/cage') in MATLAB.
  • download in Matrix Market format, file size: 40 KB.
  • download in Rutherford/Boeing format, file size: 28 KB.

    Matrix properties
    number of rows366
    number of columns366
    nonzeros5,124
    # strongly connected comp.1
    explicit zero entries0
    nonzero pattern symmetrysymmetric
    numeric value symmetrysymmetric
    typebinary
    structuresymmetric
    Cholesky candidate?no
    positive definite?no

    authorR. Diekmann, R. Preis
    editorR. Diekmann, R. Preis
    date1998
    kindundirected graph sequence
    2D/3D problem?no

    Additional fieldssize and type
    Gcell 45-by-1
    Gnamecell 45-by-1

    Notes:

    AG-Monien Graph Collection, Ralf Diekmann and Robert Preis                     
    http://www2.cs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/graphs.html
                                                                                   
    A collection of test graphs from various sources.  Many of the graphs          
    include XY or XYZ coordinates.  This set also includes some graphs from        
    the Harwell-Boeing collection, the NASA matrices, and some random matrices     
    which are not included here in the AG-Monien/ group of the UF Collection.      
    In addition, two graphs already appear in other groups:                        
                                                                                   
       AG-Monien/big : same as Nasa/barth5, Pothen/barth5 (not included here)      
       AG-Monien/cage_3_11 : same as Pajek/GD98_c (included here)                  
                                                                                   
    The AG-Monien/GRID subset is not included.  It contains square grids that      
    are already well-represented in the UF Collection.                             
                                                                                   
    Six of the problem sets are included as sequences, each sequence being         
    a single problem instance in the UF Collection:                                
                                                                                   
       bfly:  10 butterfly graphs 3..12                                            
       cage:  45 cage graphs 3..12                                                 
       cca:   10 cube-connected cycle graphs, no wrap                              
       ccc:   10 cube-connected cycle graphs, with wrap                            
       debr:  18 De Bruijn graphs                                                  
       se:    13 shuffle-exchange graphs                                           
                                                                                   
    Problem.aux.G{:} are the graphs in these 6 sequences.  Problem.aux.Gname{:}    
    are the original names of each graph, and Problemm.aux.Gcoord{:} are the       
    xy or xyz coordinates of each node, if present.                                
                                                                                   
    Graphs in the cage sequence:                                                   
                                                                                   
         1 : cage_3_5     :      10 nodes      15 edges      30 nonzeros           
         2 : cage_3_6     :      14 nodes      21 edges      42 nonzeros           
         3 : cage_3_7     :      24 nodes      36 edges      72 nonzeros           
         4 : cage_3_8     :      30 nodes      45 edges      90 nonzeros           
         5 : cage_3_9.1   :      58 nodes      87 edges     174 nonzeros           
         6 : cage_3_9.2   :      58 nodes      87 edges     174 nonzeros           
         7 : cage_3_9.3   :      58 nodes      87 edges     174 nonzeros           
         8 : cage_3_9.4   :      58 nodes      87 edges     174 nonzeros           
         9 : cage_3_9.5   :      58 nodes      87 edges     174 nonzeros           
        10 : cage_3_9.6   :      58 nodes      87 edges     174 nonzeros           
        11 : cage_3_9.7   :      58 nodes      87 edges     174 nonzeros           
        12 : cage_3_9.8   :      58 nodes      87 edges     174 nonzeros           
        13 : cage_3_9.9   :      58 nodes      87 edges     174 nonzeros           
        14 : cage_3_9.10  :      58 nodes      87 edges     174 nonzeros           
        15 : cage_3_9.11  :      58 nodes      87 edges     174 nonzeros           
        16 : cage_3_9.12  :      58 nodes      87 edges     174 nonzeros           
        17 : cage_3_9.13  :      58 nodes      87 edges     174 nonzeros           
        18 : cage_3_9.14  :      58 nodes      87 edges     174 nonzeros           
        19 : cage_3_9.15  :      58 nodes      87 edges     174 nonzeros           
        20 : cage_3_9.16  :      58 nodes      87 edges     174 nonzeros           
        21 : cage_3_9.17  :      58 nodes      87 edges     174 nonzeros           
        22 : cage_3_9.18  :      58 nodes      87 edges     174 nonzeros           
        23 : cage_3_10.1  :      70 nodes     105 edges     210 nonzeros           
        24 : cage_3_10.2  :      70 nodes     105 edges     210 nonzeros           
        25 : cage_3_10.3  :      70 nodes     105 edges     210 nonzeros           
        26 : cage_3_11    :     112 nodes     168 edges     336 nonzeros           
        27 : cage_3_12    :     126 nodes     189 edges     378 nonzeros           
        28 : cage_3_13    :     272 nodes     408 edges     816 nonzeros           
        29 : cage_3_14    :     406 nodes     609 edges    1218 nonzeros           
        30 : cage_3_15    :     620 nodes     930 edges    1860 nonzeros           
        31 : cage_4_5     :      19 nodes      38 edges      76 nonzeros           
        32 : cage_4_6     :      26 nodes      52 edges     104 nonzeros           
        33 : cage_4_7     :      76 nodes     152 edges     304 nonzeros           
        34 : cage_4_8     :      80 nodes     160 edges     320 nonzeros           
        35 : cage_5_5     :      30 nodes      75 edges     150 nonzeros           
        36 : cage_5_6     :      42 nodes     105 edges     210 nonzeros           
        37 : cage_6_6     :      62 nodes     186 edges     372 nonzeros           
        38 : cage_7_5     :      50 nodes     175 edges     350 nonzeros           
        39 : cage_8_5     :      94 nodes     376 edges     752 nonzeros           
        40 : cage_8_6     :     114 nodes     456 edges     912 nonzeros           
        41 : cage_9_5     :     118 nodes     531 edges    1062 nonzeros           
        42 : cage_9_6     :     146 nodes     657 edges    1314 nonzeros           
        43 : cage_10_6    :     182 nodes     910 edges    1820 nonzeros           
        44 : cage_12_6    :     266 nodes    1596 edges    3192 nonzeros           
        45 : cage_14_6    :     366 nodes    2562 edges    5124 nonzeros           
                                                                                   
    The primary graph (Problem.A) in this sequence is the last graph               
    in the sequence.                                                               
    

    SVD-based statistics:
    norm(A)14
    min(svd(A))3.60555
    cond(A)3.8829
    rank(A)366
    null space dimension0
    full numerical rank?yes

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;
    status:ok

    AG-Monien/cage svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.