Discrete Mathematics and Applications COT3100

Dr. Ungor

Sources: Slides are based on Dr. G. Bebis' material.

Foundations of Logic: Overview

- Propositional logic: (Sections 1.1-1.3)
 - Basic definitions.
 - Equivalence rules & derivations.
- Predicate logic (Section 1.4)
 - Predicates.
 - Quantified predicate expressions.
 - Equivalences & derivations.

Propositional Logic

Propositional Logic is the logic of compound statements built from simpler statements using Boolean connectives.

Applications:

- Design of digital electronic circuits.
- Expressing conditions in computer programs.
- Queries to databases & search engines.

Propositional Logic

Propositional Logic is the logic of compound statements built from simpler statements using Boolean connectives.

- What are Propositions?
- What are Boolean connectors?

COT3100 - Dr. Ungor

Definition of a Proposition

Definition of a Proposition

• A proposition (p, q, r, ...) is simply a statement (i.e., a declarative sentence) with a definite meaning, having a truth value that's either true (T) or false (F) (never both, neither, or somewhere in between).

Definition of a Proposition

- A proposition (p, q, r, ...) is simply a statement (i.e., a declarative sentence) with a definite meaning, having a truth value that's either true (T) or false (F) (never both, neither, or somewhere in between).
- In *probability theory*, we assign *degrees of certainty* to propositions. For now: True/False only!

Examples of Propositions • "It is raining." (Given a situation.)

Examples of Propositions *It is raining." (Given a situation.)

- "Beijing is the capital of China."

Examples of Propositions • "It is raining." (Given a situation.)

- "Beijing is the capital of China."
- "1 + 2 = 5"

- "It is raining." (Given a situation.)
- "Beijing is the capital of China."
- "1 + 2 = 5"

- "It is raining." (Given a situation.)
- "Beijing is the capital of China."
- "1 + 2 = 5"

The following are **NOT** propositions:

"Who's there?" (interrogative, question)

- "It is raining." (Given a situation.)
- "Beijing is the capital of China."
- "1 + 2 = 5"

- "Who's there?" (interrogative, question)
- "La la la la." (meaningless interjection)

- "It is raining." (Given a situation.)
- "Beijing is the capital of China."
- "1 + 2 = 5"

- "Who's there?" (interrogative, question)
- "La la la la." (meaningless interjection)
- "Just do it!" (imperative, command)

- "It is raining." (Given a situation.)
- "Beijing is the capital of China."
- "1 + 2 = 5"

- "Who's there?" (interrogative, question)
- "La la la la." (meaningless interjection)
- "Just do it!" (imperative, command)
- "Yeah, I sorta dunno, whatever..." (vague)

- "It is raining." (Given a situation.)
- "Beijing is the capital of China."
- "1 + 2 = 5"

- "Who's there?" (interrogative, question)
- "La la la la." (meaningless interjection)
- "Just do it!" (imperative, command)
- "Yeah, I sorta dunno, whatever..." (vague)
- •от"10+-2" (expression with a non-true/false value)

Boolean operators

- Negation (NOT)
- Conjunction (AND)
- Disjunction (OR)
- Exclusive-Or (XOR)
- Implication (IF)
- Bi-conditional (IFF)

COT3100 - Dr. Ungor

Operators/ Connectives

- An operator or connective combines one or more operand expressions into a larger expression. (e.g., "+" in numeric exprs.)
- *Unary* operators take 1 operand (e.g., -3); *binary* operators take 2 operands (e.g., 3 × 4).
- *Propositional* or *Boolean* operators operate on propositions or truth values instead of on numbers.

The Negation Operator

- The unary *negation operator* " \neg " (*NOT*) transforms a prop. into its logical *negation*.
- Example: If p = "I have brown hair.", then $\neg p =$ "I do not have brown hair."
- *Truth table* for NOT:

The Conjunction Operator

- The binary conjunction operator "∧" (AND)
 combines two propositions to form their logical
 conjunction.
- •*E.g.*, If p="I will have salad for lunch." and q="I will have steak for dinner.", then $p \land q$ ="I will have salad for lunch and I will have steak for dinner."

Conjunction Truth Table

p	q	$p^{\wedge}q$
F	F	F
F	T	F
T	F	F
T	T	T

Conjunction Truth Table

Note that a conjunction
 p₁ ∧ p₂ ∧ ... ∧ p_n
 of n propositions will have 2ⁿ rows in its truth table.

p	q	$p^{\wedge}q$
F	F	F
F	T	$ \mathbf{F} $
T	F	$ \mathbf{F} $
T	T	T

¬ and ∧ operations together are universal, i.e.,
 sufficient to express any truth table!

The Disjunction Operator

• The binary *disjunction operator* "v" (*OR*) combines two propositions to form their logical *disjunction*.

p="That car has a bad engine."

q="That car has a bad carburetor."

pvq="Either that car has a bad engine, or that car has a bad carburetor."

Disjunction Truth Table

p	q	$p^{V}q$
F	F	F
F	T	\mathbf{T}
T	F	\mathbf{T}
T	T	T

Disjunction Truth Table

- Note that pvq means that p is true, or q is true, or both are true!
- So this operation is also called *inclusive or*; because it **includes** the possibility that both p and q are true.
- "¬" and "v" together are also universal.

and viogether are also universal.

Let p="It rained last night", q="The sprinklers came on last night," r="The lawn was wet this morning."

$$\neg p =$$

$$r \land \neg p =$$

$$\neg r \lor p \lor q =$$

Let p="It rained last night", q="The sprinklers came on last night," r="The lawn was wet this morning."

$$\neg p$$
 = "It didn't rain last night."

$$r \wedge \neg p =$$

$$\neg r \lor p \lor q =$$

Let p="It rained last night", q="The sprinklers came on last night," r="The lawn was wet this morning."

$$\neg p =$$

$$r \land \neg p =$$

$$\neg r \lor p \lor q =$$

Let p="It rained last night", q="The sprinklers came on last night," r="The lawn was wet this morning."

Translate each of the following into English:

$$\neg p =$$

$$r \wedge \neg p =$$

"The lawn was wet this morning, and it didn't rain last night."

$$\neg r \lor p \lor q =$$

Let p="It rained last night", q="The sprinklers came on last night," r="The lawn was wet this morning."

$$\neg p =$$

$$r \land \neg p =$$

$$\neg r \lor p \lor q =$$

Let p="It rained last night", q="The sprinklers came on last night," r="The lawn was wet this morning."

Translate each of the following into English:

$$\neg p = r \land \neg p = r \land \neg p$$

 $\neg r \lor p \lor q =$

"Either the lawn wasn't wet this morning, or it rained last night, or the sprinklers came on last night."

COT3100 - Dr. Ungor

The Exclusive Or Operator

The binary exclusive-or operator "⊕" (XOR)
 combines two propositions to form their logical
 "exclusive or" (exjunction?).

p = "I will earn an A in this course,"

q = "I will drop this course,"

 $p \oplus q =$ "I will either earn an A for this course, or I will drop it (but not both!)"

Exclusive-Or Truth Table

- Note that p⊕q means that p is true, or q is true, but not both!
- This operation is called exclusive or, because it excludes the possibility that both p and q are true.
- "¬" and "⊕" together are not universal.

 p
 q
 p
 q

 F
 F
 F

 F
 T
 T

 T
 F
 T

 T
 T
 F

Natural Language is Ambiguous

Note that in English "or" is by itself ambiguous

regarding the "both" case!

regarding the both case:	<u>p</u>	\boldsymbol{q}	p or q
"Pat is a singer or	F	F	F
Pat is a writer." -	F	T	T
"Pat is rich or	T	F	T
Pat is poor." -	T	T	undef.

Need context to disambiguate the meaning!

For this class, assume "or" means inclusive.

Natural Language is Ambiguous

Note that in English "or" is by itself ambiguous

regarding	the	"both"	case!
-----------	-----	--------	-------

regarding the both case:	p	\boldsymbol{q}	p or q
"Pat is a singer or	F	F	F
Pat is a writer." - V	F	T	T
"Pat is rich or	T	F	T
Pat is poor." -	T	T	undef.

Need context to disambiguate the meaning!

For this class, assume "or" means inclusive.

Natural Language is Ambiguous

Note that in English "or" is by itself ambiguous

regarding	the	"both"	case!
-----------	-----	--------	-------

rogaranig are boar caser	p	9	p or q
"Pat is a singer or	F	F	F
Pat is a writer." - V	F	T	T
"Pat is rich or	T	F	T
Pat is poor." -	T	T	undef.

Need context to disambiguate the meaning!

For this class, assume "or" means inclusive.

The Implication Operator

- The *implication* $p \rightarrow q$ states that p implies q.
- It is FALSE <u>only</u> in the case that p is TRUE but q is FALSE.
- e.g., p="I am elected." q="Taxes will be lowered."
- $p \rightarrow q$ = "If I am elected, then taxes will be lowered" (else it could go either way)

The Implication Operator

- Terminology for the structure of implication $p \rightarrow q$
- p: Hypothesis (antecedent or premise)
- q: Conclusion (consequence)

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

• $p \rightarrow q$ is false only when p is true but q is not true.

p	\boldsymbol{q}	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

- $p \rightarrow q$ is false only when p is true but q is not true.
- $p \rightarrow q$ does **not** imply that p causes q!

p	\boldsymbol{q}	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

- $p \rightarrow q$ is false only when p is true but q is not true.
- $p \rightarrow q$ does not imply that p causes q!
- $p \rightarrow q$ does not imply that p or q are ever true!

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

- $p \rightarrow q$ is false only when p is true but q is **not** true.
- p
- p

_	Γ	$\Gamma \mid$	1
$\rightarrow q$ does not imply	F	T	T
nat p causes $q!$	T	F	F
$\rightarrow q$ does not imply	T	T	T
hat p or q are ever true!		'	

• E.g. "(1=0) \rightarrow pigs can fly" is TRUE!

- "If this lecture ends, then the sun will rise tomorrow." *True* or *False*?
- "If Monday is a day of the week, then I am a not teacher." *True* or *False*?
- "If 1+1=6, then George passed the exam." *True* or *False*?
- "If the moon is made of green cheese, then I am richer than Bill Gates." True or False?

- "If this lecture ends, then the sun will rise tomorrow." *True* or *False*?
- "If Monday is a day of the week, then I am a not teacher." *True* or *False*?
- "If 1+1=6, then George passed the exam." *True* or *False*?
- "If the moon is made of green cheese, then I am richer than Bill Gates." True or False?

- "If this lecture ends, then the sun will rise tomorrow." *True* or *False*?
- "If Monday is a day of the week, then I am a not teacher." *True* or *False*?
- "If 1+1=6, then George passed the exam." *True* or *False*?
- "If the moon is made of green cheese, then I am richer than Bill Gates." True or False?

- "If this lecture ends, then the sun will rise tomorrow." *True* or *False*?
- "If Monday is a day of the week, then I am a not teacher." *True* or *False*?
- "If 1+1=6, then George passed the exam." *True* or *False*?
- "If the moon is made of green cheese, then I am richer than Bill Gates." True or False?

- "If this lecture ends, then the sun will rise tomorrow." *True* or *False*?
- "If Monday is a day of the week, then I am a not teacher." *True* or *False*?
- "If 1+1=6, then George passed the exam." *True* or *False*?
- "If the moon is made of green cheese, then I am richer than Bill Gates." *True* or *False*?

Inverse, Converse, Contrapositive

Some terminology:

- The *inverse* of $p \rightarrow q$ is: $\neg p \rightarrow \neg q$
- The *converse* of $p \rightarrow q$ is: $q \rightarrow p$.
- The *contrapositive* of $p \rightarrow q$ is: $\neg q \rightarrow \neg p$.

Inverse, Converse, Contrapositive

Some terminology:

- The *inverse* of $p \rightarrow q$ is: $\neg p \rightarrow \neg q$
- The *converse* of $p \rightarrow q$ is: $q \rightarrow p$.
- The *contrapositive* of $p \rightarrow q$ is: $\neg q \rightarrow \neg p$.
- One of these has the same meaning (same truth table) as p → q. Can you figure out which?

Inverse, Converse, Contrapositive

Some terminology:

- The *inverse* of $p \rightarrow q$ is: $\neg p \rightarrow \neg q$
- The *converse* of $p \rightarrow q$ is: $q \rightarrow p$.
- The *contrapositive* of $p \rightarrow q$ is: $\neg q \rightarrow \neg p$.
- One of these has the same meaning (same truth table) as p → q. Can you figure out which?

Contrapositive

COT3100 - Dr. Ungor

How do we know for sure?

Proving the <u>equivalence</u> of $p \rightarrow q$ and its contrapositive using truth tables:

<i>p</i>	q	$\neg q$	$\neg p$	$p \rightarrow q$	$\neg q \rightarrow \neg p$
F	F	T	T	T	T
F	T	F	T	T	\mathbf{T}
T	F	T	F	F	F
T	T	F	F	T	\mathbf{T}

The biconditional $p \leftrightarrow q$ states that p is true if and only if (IFF) q is true.

•It is TRUE only when both $p \rightarrow q$ and $q \rightarrow p$ are TRUE.

- •It is TRUE only when both $p \rightarrow q$ and $q \rightarrow p$ are TRUE.
- •p = "It is raining."

- •It is TRUE only when both $p \rightarrow q$ and $q \rightarrow p$ are TRUE.
- •p = "It is raining."
- •q = "The home team wins."

- •It is TRUE only when both $p \rightarrow q$ and $q \rightarrow p$ are TRUE.
- •p = "It is raining."
- •q = "The home team wins."
- •p ↔ q = "If and only if it is raining, the home team wins."

<u>p</u>	q	$p \Leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

• $p \Leftrightarrow q$ means that p and q have the same truth value.

p	q	$p \Leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

- $p \leftrightarrow q$ means that p and q have the same truth value.
 - Note this truth table is the exact opposite of ⊕'s!

p	q	$p \Leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

- $p \leftrightarrow q$ means that p and q have the same truth value.
 - Note this truth table is the exact opposite of ⊕'s!

$$p \Leftrightarrow q \text{ means } \neg (p \oplus q)$$

p	q	$p \Leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

- $p \leftrightarrow q$ means that p and q have the same truth value.
 - Note this truth table is the exact opposite of ⊕'s!

$$p \Leftrightarrow q \text{ means } \neg (p \oplus q)$$

• $p \leftrightarrow q$ does **not** imply p and q are true, or cause each other.

$$\begin{array}{c|cccc} p & q & p & \stackrel{\longleftarrow}{\longrightarrow} q \\ \hline F & F & T \\ F & T & F \\ T & F & F \\ T & T & T \end{array}$$

Boolean Operations Summary

 We have seen 1 unary operator and 5 binary operators.

p	q	$\neg p$	$p^{\wedge}q$	$p^{V}q$	$p^{\oplus}q$	$p \rightarrow q$	$p \stackrel{\Longleftrightarrow}{q}$
				_		T	T
F	T	Γ	F	T	T	T	F
T	F	F	F	T	T	F	F
T	T	F	T	T	F	T	T

Precedence of Logical Operators

Operator	Precedence			
-				
\ \	2 3			
\rightarrow \leftrightarrow	4 5			

Nested Propositional Expressions

- Use parentheses to group sub-expressions: "I just saw my old friend, and either he's grown or I've shrunk." = $f \land (g \lor s)$
 - $(f \land g) \lor s$ would mean something different
 - $f \land g \lor s$ would be ambiguous
- By convention, "¬" takes precedence over both "∧" and "∨".
 - $\neg s \land f$ means $(\neg s) \land f$, not $\neg (s \land f)$

Some Alternative Notations

Name:	not	and	or	xor	implies	iff
Propositional logic:	_	٨	V	\oplus	→	←→
Boolean algebra:	\overline{p}	pq	+	(
C/C++/Java (wordwise):	!	& &		! =		==
C/C++/Java (bitwise):	~	&		^		
Logic gates:	>-		\rightarrow			

Bits and Bit Operations

- A bit is a binary (base 2) digit: 0 or 1.
- Bits may be used to represent truth values.
- By convention: 1 represents "true";
 0 represents "false".
- Boolean algebra is like ordinary algebra except that variables stand for bits, + means "or", and multiplication means "and".

Bit Strings

- A Bit string of length n is an ordered series or sequence of $n \ge 0$ bits.
- By convention, bit strings are written left to right: e.g. the first bit of "1001101010" is 1.
- When a bit string represents a base-2 number, by convention the first bit is the most significant bit. Ex. 1101₂=8+4+1=13.

Bitwise Operations

 Boolean operations can be extended to operate on bit strings as well as single bits.

```
E.g.:
01 1011 0110
11 0001 1101
11 1011 1111 Bit-wise OR
01 0001 0100 Bit-wise AND
10 1010 1011 Bit-wise XOR
```

Propositional Equivalences

COT3100 - Dr. Entezari

Propositional Equivalence

Two *syntactically* (*i.e.*, textually) different compound propositions may be *semantically* identical (*i.e.*, have the same meaning). We call them *equivalent*.

NEXT:

- Learn about various equivalence rules or laws.
- Learn how to *prove* equivalences using *symbolic derivations*.

A *tautology* is a compound proposition that is **true** *no matter what* the truth values of its atomic propositions are!

A *tautology* is a compound proposition that is **true** *no matter what* the truth values of its atomic propositions are!

Ex. $p \lor \neg p$ [What is its truth table?]

A *tautology* is a compound proposition that is **true** *no matter what* the truth values of its atomic propositions are!

Ex. $p \lor \neg p$ [What is its truth table?]

A *contradiction* is a comp. prop. that is **false** no matter what! $Ex. p \land \neg p$ [Truth table?]

A *tautology* is a compound proposition that is **true** *no matter what* the truth values of its atomic propositions are!

Ex. $p \lor \neg p$ [What is its truth table?]

A *contradiction* is a comp. prop. that is **false** no matter what! $Ex. p \land \neg p$ [Truth table?]

Other comp. props. are contingencies.

Proving Equivalences

Proving Equivalences

Compound propositions P and Q are logically equivalent to each other IFF P and Q contain the same truth values as each other in <u>all</u> rows of their truth tables.

Proving Equivalences

Compound propositions P and Q are logically equivalent to each other IFF P and Q contain the same truth values as each other in <u>all</u> rows of their truth tables.

Compound proposition P is *logically equivalent* to compound proposition Q, written $P \Leftrightarrow Q$, IFF the compound proposition $P \Leftrightarrow Q$ is a tautology.

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg (\neg p \land \neg q).
\end{array}$$

p	q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
F	F					
F	T					
T	F					
T	T					

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p	q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
F	F	F				
F	T					
T	F					
T	T					

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p	q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
F	F	F				
F	T	T				
T	F					
T	T					

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p	q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land$	$\neg q$	$\neg(\neg p \land$	$\neg q)$
F	F	F						
F	T	T						
T	F	Т						
T	T							

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg (\neg p \land \neg q).
\end{array}$$

p	$q \mid$	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
F	F	F				
F '	T	T				
T	F	Т				
T'	T	T				

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p	q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
F	F	F	T			
F	T	T				
T	F	Т				
T	T	T				

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg (\neg p \land \neg q).
\end{array}$$

p q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
FF	F	T			
FT	T	T			
TF	T				
TT	T				

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land$	$\neg q$	$\neg (\neg p \land \neg$	$^{1}q)$
FF	F	T					
FΤ	T T	T					
TF	T	F					
TT	T						

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p	q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg$	^{1}q	$\neg(\neg p \land \neg p)$	$\neg q)$
F	F	F	T					
F	T	T	T					
T	F	Т	F					
T	T	T	F					

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p	q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
F	F	F	T	T		
F	T	T	T			
T	F	Т	F			
T	T	T	F			

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p	q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
F	F	F	T	T		
F	T	T	T	F		
T	F	Т	F			
T	T	T	F			

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p	q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
F	F	F	T	T		
F	T	T	T	F		
T	F	Т	F	T		
T	T	T	F			

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p	q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
F	F	F	T	T		
F	T	T	T	F		
T	F	Т	F	Т		
T	T	T	F	F		

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p	q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
F	F	F	T	T	T	
F	T	Т	T	F		
T	F	Т	F	T		
T	T	Т	F	F		

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p	q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
F	F	F	T	T	T	
F	T	T	T	F	F	
T	F	Т	F	T		
T	T	T	F	F		

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p	q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
F	F	F	T	T	T	
F	T	Т	T	F	F	
T	F	Т	F	T	F	
T	T	T	F	F		

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p	$q \Big $	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
F	F	F	T	T	T	
F '	T	Т	T	F	F	
T	F	Т	F	T	F	
T	T	T	F	F	F	

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p q	p^{V}	q	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
F	7 F	1	Т	T	T	F
F 7	$\lceil ig ceil$ $oldsymbol{T}$		Т	F	F	
T	7 T		F	T	F	
T	$\lceil ig \; T$		F	F	F	

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg (\neg p \land \neg q).
\end{array}$$

p q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
FF	F	T	T	T	F
FT	T	T	F	F	T
TF	T	F	T	F	
TT	T	F	F	F	

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
FF	F	T	T	T	F
FT	T	T	F	F	T
TF	T	F	T	F	T
TT	T	F	F	F	

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg(\neg p \land \neg q).
\end{array}$$

p q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
FF	F	T	T	T	F
FT	T	Т	F	F	T
TF	T	F	T	F	T
TT	T	F	F	F	T

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg (\neg p \land \neg q).
\end{array}$$

		$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
FF	/ F	Т	T	T	F
F F F T	Т	T	F	F	T
ΤF		F	T	F	T
TT	T /	F	F	F	T

$$\begin{array}{ccc}
P & Q \\
p \lor q \Leftrightarrow \neg (\neg p \land \neg q).
\end{array}$$

p q	$p^{V}q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
FF	/ F	T	T	T	/ F
FT	Т	T	F	F	T
TF	Т	F	T	F	T
TT	T /	F	F	F	\ T /
"		1	'	1	

Equivalence Laws

- These are similar to the <u>arithmetic identities</u> you may have learned in algebra, but for propositional equivalences instead.
- They provide a <u>pattern or template</u> that can be used to match much more complicated propositions and to find equivalences for them.

Equivalence Laws - Examples

- Identity: $p \wedge \mathbf{T} \Leftrightarrow p \quad p \vee \mathbf{F} \Leftrightarrow p$
- Domination: $p \lor T \Leftrightarrow T \quad p \land F \Leftrightarrow F$
- Idempotent: $p \lor p \Leftrightarrow p \quad p \land p \Leftrightarrow p$
- Double negation: $\neg \neg p \Leftrightarrow p$
- Commutative: $p \lor q \Leftrightarrow q \lor p \quad p \land q \Leftrightarrow q \land p$
- Associative: $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

More Equivalence Laws

• Distributive:
$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

 $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$

• De Morgan's:

$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$
$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

More Equivalence Laws

• Absorption:

$$p \lor (p \land q) \Leftrightarrow p$$

$$p \land (p \lor q) \Leftrightarrow p$$

• Trivial tautology/contradiction:

$$p \vee \neg p \Leftrightarrow \mathbf{T}$$
 $p \wedge \neg p \Leftrightarrow \mathbf{F}$

Defining Operators via Equivalences

Using equivalences, we can *define* operators in terms of other operators.

- Implication: $p \rightarrow q \Leftrightarrow \neg p \lor q$
- Biconditional: $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q \Leftrightarrow \neg (p \oplus q)$
- Exclusive or: $p \oplus q \Leftrightarrow (p \lor q) \land \neg (p \land q)$ $p \oplus q \Leftrightarrow (p \land \neg q) \lor (q \land \neg p)$

• Check using a symbolic derivation whether $(p \land \neg q) \rightarrow (p \oplus r) \Leftrightarrow \neg p \lor q \lor \neg r$.

• Check using a symbolic derivation whether $(p \land \neg q) \rightarrow (p \oplus r) \Leftrightarrow \neg p \lor q \lor \neg r$.

$$(p \land \neg q) \rightarrow (p \oplus r) \Leftrightarrow$$

• Check using a symbolic derivation whether $(p \land \neg q) \rightarrow (p \oplus r) \Leftrightarrow \neg p \lor q \lor \neg r$.

$$(p \land \neg q) \xrightarrow{} (p \oplus r) \Leftrightarrow$$

[Expand definition of \rightarrow] $\neg (p \land \neg q) \lor (p \oplus r)$

• Check using a symbolic derivation whether $(p \land \neg q) \rightarrow (p \oplus r) \Leftrightarrow \neg p \lor q \lor \neg r$.

$$(p \land \neg q) \xrightarrow{} (p \oplus r) \Leftrightarrow$$

[Expand definition of \rightarrow] $\neg (p \land \neg q) \lor (p \oplus r)$

[Defn. of \oplus] $\Leftrightarrow \neg (p \land \neg q) \lor ((p \lor r) \land \neg (p \land r))$

• Check using a symbolic derivation whether $(p \land \neg q) \rightarrow (p \oplus r) \Leftrightarrow \neg p \lor q \lor \neg r$.

$$(p \land \neg q) \xrightarrow{} (p \oplus r) \Leftrightarrow$$

[Expand definition of \rightarrow] $\neg (p \land \neg q) \lor (p \oplus r)$

[Defn. of
$$\oplus$$
] $\Leftrightarrow \neg(p \land \neg q) \lor ((p \lor r) \land \neg(p \land r))$

[DeMorgan's Law]

• Check using a symbolic derivation whether $(p \land \neg q) \rightarrow (p \oplus r) \Leftrightarrow \neg p \lor q \lor \neg r$.

$$(p \land \neg q) \xrightarrow{} (p \oplus r) \Leftrightarrow$$

[Expand definition of \rightarrow] $\neg (p \land \neg q) \lor (p \oplus r)$

[Defn. of
$$\oplus$$
] $\Leftrightarrow \neg (p \land \neg q) \lor ((p \lor r) \land \neg (p \land r))$

[DeMorgan's Law]

$$\Leftrightarrow (\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r))$$

• Check using a symbolic derivation whether $(p \land \neg q) \rightarrow (p \oplus r) \Leftrightarrow \neg p \lor q \lor \neg r$.

$$(p \land \neg q) \xrightarrow{} (p \oplus r) \Leftrightarrow$$

[Expand definition of \rightarrow] $\neg (p \land \neg q) \lor (p \oplus r)$

[Defn. of
$$\oplus$$
] $\Leftrightarrow \neg (p \land \neg q) \lor ((p \lor r) \land \neg (p \land r))$

[DeMorgan's Law]

$$\Leftrightarrow (\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r))$$

Example Continued...

Example Continued... $(\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r)) \Leftrightarrow [\lor commutes]$

COT3100 - Dr. Ungor

Continued...

 $(\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r)) \Leftrightarrow [\lor commutes]$

 \Leftrightarrow $(q \lor \neg p) \lor ((p \lor r) \land \neg (p \land r))$ [v associative]

Continued...

 $(\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r)) \Leftrightarrow [\lor commutes]$

 \Leftrightarrow $(q \lor \neg p) \lor ((p \lor r) \land \neg (p \land r))$ [v associative]

 $\Leftrightarrow q \vee (\neg p \vee ((p \vee r) \wedge \neg (p \wedge r)))$ [distrib. \vee over \wedge]

Continued...

 $(\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r)) \Leftrightarrow [\lor commutes]$

 \Leftrightarrow $(q \lor \neg p) \lor ((p \lor r) \land \neg (p \land r))$ [v associative]

 $\Leftrightarrow q \vee (\neg p \vee ((p \vee r) \wedge \neg (p \wedge r)))$ [distrib. \vee over \wedge]

 $\Leftrightarrow q \lor (((\neg p \lor (p \lor r)) \land (\neg p \lor \neg (p \land r)))$

Continued...

 $(\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r)) \Leftrightarrow [\lor commutes]$

 \Leftrightarrow $(q \lor \neg p) \lor ((p \lor r) \land \neg (p \land r))$ [v associative]

 $\Leftrightarrow q \vee (\neg p \vee ((p \vee r) \wedge \neg (p \wedge r)))$ [distrib. \vee over \wedge]

 $\Leftrightarrow q \lor (((\neg p \lor (p \lor r)) \land (\neg p \lor \neg (p \land r)))$

[assoc.] $\Leftrightarrow q \lor (((\neg p \lor p) \lor r) \land (\neg p \lor \neg (p \land r)))$

Continued...

 $(\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r)) \Leftrightarrow [\lor commutes]$

$$\Leftrightarrow$$
 $(q \lor \neg p) \lor ((p \lor r) \land \neg (p \land r))$ [v associative]

$$\Leftrightarrow q \lor (\neg p \lor ((p \lor r) \land \neg (p \land r)))$$
 [distrib. \lor over \land]

$$\Leftrightarrow q \vee (((\neg p \vee (p \vee r)) \wedge (\neg p \vee \neg (p \wedge r)))$$

[assoc.]
$$\Leftrightarrow q \lor (((\neg p \lor p) \lor r) \land (\neg p \lor \neg (p \land r)))$$

[trivial taut.]
$$\Leftrightarrow q \lor ((\underline{\mathbf{T}} \lor r) \land (\neg p \lor \neg (p \land r)))$$

Continued...

 $(\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r)) \Leftrightarrow [\lor commutes]$

$$\Leftrightarrow$$
 $(q \lor \neg p) \lor ((p \lor r) \land \neg (p \land r))$ [v associative]

$$\Leftrightarrow q \lor (\neg p \lor ((p \lor r) \land \neg (p \land r)))$$
 [distrib. \lor over \land]

$$\Leftrightarrow q \lor (((\neg p \lor (p \lor r)) \land (\neg p \lor \neg (p \land r)))$$

[assoc.]
$$\Leftrightarrow q \lor (((\neg p \lor p) \lor r) \land (\neg p \lor \neg (p \land r)))$$

[trivial taut.]
$$\Leftrightarrow q \lor ((\mathbf{T} \lor r) \land (\neg p \lor \neg (p \land r)))$$

[domination]
$$\Leftrightarrow q \lor (\mathbf{T} \land (\neg p \lor \neg (p \land r)))$$

Continued...

$$(\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r)) \Leftrightarrow [\lor commutes]$$

$$\Leftrightarrow$$
 $(q \lor \neg p) \lor ((p \lor r) \land \neg (p \land r))$ [v associative]

$$\Leftrightarrow q \lor (\neg p \lor ((p \lor r) \land \neg (p \land r)))$$
 [distrib. \lor over \land]

$$\Leftrightarrow q \vee (((\neg p \vee (p \vee r)) \wedge (\neg p \vee \neg (p \wedge r)))$$

[assoc.]
$$\Leftrightarrow q \lor (((\neg p \lor p) \lor r) \land (\neg p \lor \neg (p \land r)))$$

[trivial taut.]
$$\Leftrightarrow q \lor ((\mathbf{T} \lor r) \land (\neg p \lor \neg (p \land r)))$$

[domination]
$$\Leftrightarrow q \lor (\mathbf{T} \land (\neg p \lor \neg (p \land r)))$$

$$[\text{identity}] \Leftrightarrow q \lor (\neg p \lor \neg (p \land r)) \Leftrightarrow cont.$$

 $q \vee (\neg p \vee \neg (p \wedge r))$

$$q \vee (\neg p \vee \neg (p \wedge r))$$

[DeMorgan's]
$$\Leftrightarrow q \vee (\neg p \vee (\neg p \vee \neg r))$$

$$q \vee (\neg p \vee \neg (p \wedge r))$$

[DeMorgan's]
$$\Leftrightarrow q \lor (\neg p \lor (\neg p \lor \neg r))$$

[Assoc.]
$$\Leftrightarrow q \lor ((\neg p \lor \neg p) \lor \neg r)$$

$$q \vee (\neg p \vee \neg (p \wedge r))$$

[DeMorgan's]
$$\Leftrightarrow q \vee (\neg p \vee (\neg p \vee \neg r))$$

[Assoc.]
$$\Leftrightarrow q \lor ((\neg p \lor \neg p) \lor \neg r)$$

[Idempotent]
$$\Leftrightarrow q \lor (\neg p \lor \neg r)$$

$$q \vee (\neg p \vee \neg (p \wedge r))$$

[DeMorgan's]
$$\Leftrightarrow q \lor (\neg p \lor (\neg p \lor \neg r))$$

[Assoc.]
$$\Leftrightarrow q \lor ((\neg p \lor \neg p) \lor \neg r)$$

[Idempotent]
$$\Leftrightarrow q \lor (\neg p \lor \neg r)$$

[Assoc.]
$$\Leftrightarrow (q \lor \neg p) \lor \neg r$$

$$q \vee (\neg p \vee \neg (p \wedge r))$$

[DeMorgan's]
$$\Leftrightarrow q \lor (\neg p \lor (\neg p \lor \neg r))$$

[Assoc.]
$$\Leftrightarrow q \lor ((\neg p \lor \neg p) \lor \neg r)$$

[Idempotent]
$$\Leftrightarrow q \lor (\neg p \lor \neg r)$$

[Assoc.]
$$\Leftrightarrow (q \lor \neg p) \lor \neg r$$

[Commut.]
$$\Leftrightarrow \neg p \lor q \lor \neg r$$

$$q \vee (\neg p \vee \neg (p \wedge r))$$

[DeMorgan's]
$$\Leftrightarrow q \lor (\neg p \lor (\neg p \lor \neg r))$$

[Assoc.]
$$\Leftrightarrow q \lor ((\neg p \lor \neg p) \lor \neg r)$$

[Idempotent]
$$\Leftrightarrow q \lor (\neg p \lor \neg r)$$

[Assoc.]
$$\Leftrightarrow (q \lor \neg p) \lor \neg r$$

[Commut.]
$$\Leftrightarrow \neg p \lor q \lor \neg r$$

Q.E.D. (quod erat demonstrandum)