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Abstract:  The increasing popularity in multimedia 
applications provokes microprocessors to include media-
enhancement instructions. In this paper, we describe a 
methodology to estimate performance improvement of a new 
set of media instructions on emerging applications based on 
workload characterization and measurement. Application 
programs are characterized into a sequential segment, a 
vectorizable segment, and extra data moves for utilizing the 
SIMD capability of new media instructions. Techniques 
based on benchmarking and measurements on existing 
systems are used to estimate the execution time of each 
segment. Based on the measurement results, the speedup 
and the additional data moves of using the new media 
instructions can be estimated to help processor architects 
and designers evaluate different design tradeoffs. 

 
 

1. Introduction 
 
Digital signal and multimedia processing becomes 

increasingly popular in many microprocessor applications. 
Today, almost all the commercial microprocessors, from 
ARM to Pentium processors, have some types of media-
oriented enhancement. For example, the MMX technology 
has been introduced to the Intel x86 architecture and 
implemented in Pentium processors [12]. A set of 57 
instructions is added to treat data in a Single-Instruction-
Multiple-Data (SIMD) fashion. These instructions exploit 
the data parallelism at sub-word granularity that is often 
available in digital signal processing or multimedia 
applications [10]. 

 
Performance improvement of using the media-enhanced 

instructions, such as the MMX technology, is based on three 
main factors:  the amount of data parallelism in applications 
that can be exploited by the MMX instructions; the 
granularity of the sub-word parallelism that each MMX 
instruction can exploit; and the matching of data structure 
stored in memory and used in MMX registers in order to 
utilize the MMX instruction capabilities.  The third factor 
involves moving data between MMX registers, and to/from 
memory or regular registers, which incur additional delays 

in using the MMX instructions and can offset the overall 
performance improvement. 

 
One essential issue in defining the media-extension 

instructions is their ability to exploit parallelism in emerging 
multimedia applications to achieve certain performance 
target. Performance evaluation of a new set of media 
instructions on applications is critical to assess architectural 
tradeoffs for the new media instructions. The traditional 
cycle-accurate simulation is a time-consuming process that 
requires detailed processor models to handle both regular 
and new SIMD media instructions. In addition, proper 
methods are needed to generate executable binary codes for 
the new media-extension instructions to drive the simulator. 
In this paper, we describe a methodology of estimating 
performance improvement of new media instructions based 
on workload characterization and measurement. The 
proposed method allows processor architects and media 
experts to quickly estimate the speedup of some emerging 
applications with a few additional media instructions to the 
existing instruction set architecture. A uniqueness of this 
approach is that we only need existing hardware; no cycle-
accurate simulator is required. 

 
The basic approach involves several steps. First, a set of 

multimedia application programs and their equivalent codes 
with new SIMD instructions are developed. Second, each 
application program is characterized into three execution 
segments that include the sequential segment, the segment 
of the code that can be vectorized by a set of new SIMD 
instructions, and the explicit data-move segment for new 
media instructions.  Third, based on timing measurement on 
existing systems, the execution time of each segment can be 
calculated. Finally, the total execution time of an application 
with additional SIMD instructions can be estimated from the 
execution times of the three segments. The sequential time 
will remain unchanged with new multimedia instructions. 
The execution time of the vectorizable segment can be 
extrapolated according to the architecture speedup of the 
new SIMD instructions. The execution time of the data-
move segments will depend on the memory hierarchy 
performance for the data-move instructions. 

 



The proposed method is experimented on Intel Pentium 
III systems using the equipped MMX technology. To 
simplify our experiment, we treat several existing MMX 
arithmetic and logic instructions as new MMX instructions. 
We further assume that there is no new data move 
instructions to accommodate for the new set of MMX 
instructions. In a case study using an inverse discrete cosine 
transform (IDCT) program, the estimated execution time 
based on our methodology is within 7\% of the measured 
execution time. Besides a single estimated execution time, 
the proposed method can also provide sensitivity studies for 
a range of speedups based on the performance improvement 
of new MMX instructions to help architects make design 
decisions.  

 
The paper is organized as follows. The proposed 

performance estimation method is described in the next 
section. This is followed by a case study using the IDCT 
program on an existing system to verify the method. A 
summary will be given at the end. 

 
 

2.  Workload Characterizations and Measurement 
 
In the proposed method, three program segments: 

sequential, vectorizable, and data moves, must be able to 
characterized separately. The execution time of each 
segment is derived from the timing measurement on an 
existing system, where the new set of media SIMD 
instructions are not available. In this section, we describe 
detailed steps to accomplish the proposed task. The Intel 
MMX technology is used as the basis of our experiment. 
We refer the arithmetic, logical, comparison, and shift 
media instructions as the computation instructions, while the 
data-manipulation instructions, such as MOVE, PACK and 
UNPACK, as the data-move instructions. 

 
2.1.  Estimating Speedup for MMX 

 
The fundamental performance advantage of using 

SIMD media instructions is similar to parallel programming 
on vector machines, where the Amdahl’s Law can estimate 
the speedup of an application:  
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f is fraction of the program that can be vectorized, and n is 
the ideal speedup of f. 

 
In using the MMX technology, programmers must 

explicitly insert the needed data-move instructions to/from 
MMX registers for the computation instructions. These 
data-move instructions can be characterized separately to 
improve the execution time estimation. Furthermore, in the 
vectorized segment, several program constructs such as loop 

controls and procedure calls may not be able to take the 
advantage of the MMX instructions. Therefore, we can 
modify the Amdahl's formula to accommodate the MMX 
technology. This formula will be used as the basis in our 
estimation method.  
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O is portion of the code in the vectorizable segment that 

cannot be replaced by MMX instructions; D represents the 
fraction of the data-move instructions; and m is the speedup 
of the data moves. 

 
2.2.  Data Move with Rearrangement 

 
There are a limited number of media registers, i.e. 8, 

each with a limited width, i.e. 64 bits in the MMX 
technology. These limitations along with the restriction on 
how SIMD computation instructions can operate on these 
registers often creates a gap between the normal data lay-out 
in memory and the format that the data needs to be arranged 
in the media registers. 

 

 
Figure 1.  Data Arrangement in Registers for Matrix/Vector 
Multiplication 

 
 
Figure 1 illustrates an example of simple matrix/vector 

multiplication using two MMX instructions. The Packed-
Multiply-and-Add (PMADDWD) performs four 16-bits 
multiplications and two additions to produce two 32-bit 
partial sums. In conjunction with another PMADDWD and 
a Packed-Add (PADDD), two elements in the resulting 
vector can be obtained as shown in the figure. In this 



example, each row of the matrix and the multiplicand vector must be split and duplicated in the corresponding MMX
registers to take advantages of the PADDD instructions. 
This odd data arrangement makes MMX programming 
difficult. In addition, the extra data arrangement incurs 
performance penalties that need to be considered in 
estimating the speedup for adding any new media SIMD 
instructions. 

 
In contrast, a more natural data arrangement can be 

accomplished as shown in Figure 2. The entire source vector 
and each row of the matrix are moved into separate MMX 
registers for the PMADDWD. To accomplish this, a new 
PADDD must be invented that adds the corresponding high-
order and low-order 32-bit of each of the two source 
registers to produce the two vector elements in the 
destination MMX register. However, depending on the 
subsequent computations, further data rearrangement may 
still be needed even with the new PADDD instruction. 

 

 
 

Figure 2.  Another Way of Data Arrangement in Registers 
for Matrix/Vector Multiplication 

 
2.3.  Workload Vectorization and Benchmarking 

 
An 8x8 Inverse-Discrete-Cosine-Transform (IDCT) is 

selected as a case study to demonstrate the proposed 
performance estimation method. The IDCT is widely used 
in image and video compression/decompression and has 
been implemented with the MMX technology [3, 4, 11, 13]. 
The IDCT program we selected is based on Chen's 
algorithm that is more suitable for exploiting the MMX 
technology [1]. The 2-dimension IDCT is decomposed into 
row-column method of 1-dimension 8-point IDCT. The 
idct_row, which represents a majority of the total execution 
time, is selected for vectorization in our experiment. 

 
In the first step, the IDCT program (written in C, also 

referred as the C-code), and its equivalent vectorized MMX 
code (referred as the MMX-code), are developed. The MMX-
code includes new SIMD computation instructions along 
with necessary data-move instructions. In order to test the 
proposed method on an existing system, four computation 

instructions, PMADDWD, PADDD, PSUBD, and PSRAD 
are assumed to be new to the current MMX instruction set.  
The MMX-code should be optimized to exploit the SIMD 
capability. We refer this step as a vectorization step because 
of its similarity with respect to developing vector code for 
vector machines. 

 
The MMX-code, with new MMX instructions, is not 

able to run on the current system. Therefore, we also 
develop another equivalent MMX code (referred as the 
Pseudo MMX-code). The Pseudo MMX-code includes all 
the data move instructions as that in the original MMX-code, 
along with equivalent MMX-like C instructions for the 
SIMD computation instructions. Figure 3 shows a portion of 
the MMX-code from idct_row that has been vectorized and 
its equivalent Pseudo MMX-code. In the Pseudo MMX-code, 
the replacement C-code must be perfectly mapped to the 
corresponding MMX instructions. This Pseudo MMX-code, 
without any new MMX instructions, can now run on an 
existing system and produces correct execution results. 

 
The equivalent C-code is first executed on a host 

system with the equipped MMX technology. Several time 
components are measured including the total execution 
time, the time required for the sequential segment (1-f), 
and the time required for the vectorizable segment (f). Note 
that we use the notations from the modified Amdahl’s Law 
to refer to the respective timing components. The IDCT 
code is executed one million times to collect all the timing 
information. The reported timing is an average of 10 
separate runs.  

 
The next step is to estimate the time (D) needed for the 

data move instructions. The data move is required for the 
new computation instructions. The execution time of the 
Pseudo MMX-code is measured on the host Pentium III 
system.  The difference of the execution times between the 
equivalent C-code and the Pseudo MMX-code can provide 
the estimated time (D) of the data moves.1 To verify that 
all the data moves in the Pseudo MMX-code are indeed 
executed, we use the performance tool gprof  [14] to 
collect the execution count of each instruction. In general, 
multimedia applications have very deterministic program 
control flows, adding a few data moves does not alter the 
execution flow of the program. 

 
Similarly, the computation instructions in the MMX-

code can be removed without replacing them by the 
equivalent C instructions. This Cripple-code will not 
generate correct results because of the removed 
computation instructions. Again, using gprof, we can 
verify that all the remaining instructions are executed when 
                                                 
1 The lowest compiler optimization level is used to make 
sure the dummy data moves are not removed. 



 

Figure 3.   IDCT and Its Vectorized Code using MMX Technology 



we measure the execution time for this Cripple-code. The 
measured execution time represents the sequential code (1-
f) plus the data moves (D) that are associated with the 
MMX-code. Therefore, the difference of the execution 
times between the Cripple-code and the Pseudo MMX-
code can provide the estimated execution time (f-O) for the 
vectorizable portion of the C-code. This vectorizable 
portion of the total execution time is the main target for 
improvement with new SIMD computation instructions. 

 
The vectorizable portion (f-O) of the C-code can be 

different from the original vectorizable segment (f). A few 
program constructs, such as loop controls and procedure 
calls, may exist in the vectorizable segment, but cannot be 
vectorized by the MMX instructions. The execution time 
(O) of this unvectorizable portion can be estimated by 
subtracting the time (f-O) of the vectorizable portion of the 
C-code from the time (f) of the original vectorizable 
segment. 

 
2.4.  Performance Projection and Verification 

 
Figure 4 illustrates different components of the four 

types of program code used in the proposed methodology.  
The sequential (1-f) and vectorizable (f) segments of the 
equivalent C-code are identified and their execution times 
are measured. The MMX-code is developed with additional 
data moves (D) for the new MMX instructions. The 

Pseudo-MMX code replaces the new MMX instructions 
with the equivalent C instructions (f-O). The Cripple-code 
removes the new MMX instructions from the MMX-code. 
Given the execution time of different type of codes through 
measurement, we can compute the execution time for 
individual components except for the new MMX 
instructions because the MMX-code cannot run on an 
existing system. 

 
We can now estimate the total execution time and the 

speedup using the new set of computation instructions. 
According to the modified Amdahl's formula, the estimated 
execution time is equal to the summation of the sequential 
execution time (1-f), the extra unvectorizable time (O), the 
time spent on all the new computation instructions (f / n), 
and the time takes for moving the data to/from the MMX 
registers (D / m). The time spent on new computation 
instructions can be extrapolated by dividing the measured 
vectorizable timing of the C-code from an architecture 
speedup factor (n) for the new computation instructions. 
Due to the complexity in estimating memory hierarchy 
performance, it is more difficult to estimate the time 
change factor (m) for the data moves. One way to remedy 
this difficulty is to present a sensitivity study. A range of 
estimated execution times for different memory delays can 
help gaining insights on the overall impact of new MMX 
instructions. 
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To verify the proposed methodology, we pretend that 
there are four “new” SIMD computation instructions, 
PMADDWD, PADDD, PSUBD and PSRAD. The estimated 
total execution time can be verified against the measurement 
time of the MMX-code on the host system. (Note that this 
step is not possible for true new instructions.)  Due to the 
complexity of processor pipeline designs, it is difficult to 
accurately estimate the speedup factor (n) of the new 
computation instructions. One alternative approach is to 
draw a speedup curve based on a range of architecture 
speedups of the new SIMD instructions. Such a speedup 
curve, along with the estimated data move overhead can 
help architects to make proper design tradeoffs. 

 
Several steps have taken for estimating the speedups 

of the new SIMD instructions. First, the assembly-level 
code is examined for each new SIMD instruction. Figure 5 
shows a C code segment with its corresponding assembly 
code. This example performs two multiplications and one 
addition. Using a PMADDMD can benefit a pair of these C 
instructions. In addition to the two multiplications and one 
addition, there are several data moves generated by the 
compiler to move data in and out of registers. In contrast, 
the programmer explicitly controls the necessary data moves 
when the PMADDWD is used. Note that by using 
PMADDMD, we not only put multiple multiplications and 
additions together in one instruction, but also group a 
number of memory accesses in one data move instruction. 
Since the explicit data moves for the PMADDWD are 
counted separately in our method, the implicit data moves in 
the assembly code must take into consideration in 
calculating the speedup for the PMADDMD.   

 
Second, instructions can be executed together in the 

target Pentium III system with multiple dispatch ports. Each 
assembly instruction incurs certain delays as specified in the 
Pentium architecture book. We can estimate the execution 

latency of the assembly to obtain the estimated speedup 
factor (n). The details are omitted and can be found in [2]. 

 
Third, the above steps are carried out for each new 

SIMD instruction to obtain the respective speedup. 
Afterwards, we can calculate the weighted average speedup 
by counting the number of occurrences of each SIMD 
instruction in the idct_row. An example of estimating the 
average speedup will be given in the next section. 

 
 

3. Case Study Results 
 
 The IDCT is used as a case study for experimenting 

the proposed method. We focus on vectorizing idct_row 
using the new PMADDWD, PADDD, PSUBD, and PSRAD 
instructions. We assume that the idct_column has been 
vectorized using the existing MMX technology and is 
considered as the sequential code segment. The performance 
timing results from the measurement and projections are 
summarized in Table 1.  

 
The total execution time the C-code takes 1.56 

seconds. The sequential segment takes 0.13 seconds, while 
the vectorizable segment takes 1.43 seconds. Therefore, we 
are dealing with over 90% of the code that is vectorizable. 
The Pseudo MMX code takes 1.69 seconds. By subtracting 
the time of the C-code from the time of the Pseudo MMX 
code, we can get the estimated delay of 0.13 seconds for the 
data moves. Although the data moves represent a small 
portion of the total execution time for the Pseudo MMX 
code, it will be more significant for the MMX-code if the 
delay remains a constant. 

 
With the measured 0.38 seconds of the Cripple-code, 

we can calculate the vectorizable portion of the C-code by

Figure 5.  An Example of C Code Segment and Its Assembly Code 



taking the 0.38 seconds out of the 1.69 seconds of the 
Pseudo MMX code. The result of 1.31 seconds is the 
portion of the code that can be speeded up by the new 
SIMD instructions. We can also calculated the time for the 
unvectorizable portion of the code by taking the time for 
the sequential segment and the data moves away from the 
time for the Cripple-code. Finally, the total estimated 
execution time can be calculated; the result is equal to 
0.5419 seconds. Comparing with the measured execution 
time for the MMX-code, the estimated time is about 7% 
off the measurement target.  
 

In the above calculations, we use an estimated 
architecture speedup of 8.09 based on the execution cycles 
from Intel’s Reference Manuals [5, 6, 7, 8, 9]. As shown in 

Table 2, each PMADDWD equivalent C code takes 14 
cycles, which is analyzed based on the assembly code 
using the architectural information of the current system. 
The new MMX instruction will take only 1 cycle. The 
system architect can provide the cycle count information 
for the new media instructions. Hence the estimated 
speedup of PMADDWD is 14. The speedups of other new 
SIMD instructions can be estimated similarly [2]. We can 
calculate a weighted speedup by averaging the sum of the 
products of the individual speedup and the number of 
occurrences of the SIMD instructions in the program. 
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Code Segment Operations C code 
Cycles 

MMX 
Cycles 

Speedup Number of 
Occurrence 

pmaddwd for 
a0-b3 

4 multiply 
2 add 

14 1 14 8 

paddwd for 
rounder 

2 add 4 1 4 2 

paddwd for 
a0-b3 

2 add 4 1 4 4 

paddwd and 
psubwd, row[] 

2 add,  or 
2 subtract 

5 
6 

1 
1 

5.5 2 
2 

prad, row[]  5 1 5 4 

Program Timing Component Time (sec) 
Sequential (idct_col) + Vectorizable portion 

(idct_row) + Unvectorizable (calls in idct_row) 
1.56 

Sequential (idct_col) 0.13 

1. C-code 

Vectorizable portion (idct_row) + Unvectorizable  1.43 
Sequential (idct_col) + Vectorizable portion 

(idct_row) + Moves + Unvectorizable  
1.69 2. Pseudo MMX code 

  (Computation MMX is  
  replaced by C-equivalent) Moves = (2) - (1) = 1.69 - 1.56 0.13 

Sequential (idct_col) + Moves + Unvectorizable  0.38 
Vectorizable portion = (2) – (3) = 1.69 - 0.38 1.31 

3. Crippled MMX code  
  (Computation MMX is  
   removed) Unvectorizable = (3) – Sequential (idct_col) – Moves 

      = 0.38 - 0.13 - 0.13 
0.12 

4. Estimated Execution 
    time 

Total = (0.13 + 0.12 + 0.13) + 1.31/8.09 
      (8.09 is the estimated speedup for new MMX) 

0.5419 

5. Overall Speedup 1.56 / 0.5419 2.878 
6. Measured MMX code 
   (for verification purpose) 

Sequential (idct_col) + Unvectorizable + New MMX 
+ Moves 

0.505 

Table 1.  Performance Measurement and Projection – A Case Study, IDCT 

Table 2.  Estimated Speedup for New SIMD Instructions 



 

 
Figure 6.  The Total Execution Time and Speedup with 
Respect to Performance of New SIMD Instructions 

 
Figure 6 plots the overall execution time and speedup 

given improvements of the computation instructions. In 
this figure, we assume the time for the data moves remain 
unchanged. With 2 times of performance improvement for 
the new computation instructions, the overall speedup is 
close to 1.5, while the speedup is over 2.5 given 10 times 
improvement of the computation instructions. The data 
moves along take about 8% of the total execution time 
without any improvement on the vectorizable code. The 
percentage increases to 26% when the new computation 
instructions get 10 times of performance improvement. 

 
We also did a sensitivity study on the data move 

overhead. As shown in Figure 7, with 30% more penalty 
for the data moves, the speedup is reduced from 2.9 to 2.7. 
On the other hand, the speedup increases from 2.9 to 3.1 if 
the data move overhead can be reduced by 30%. In this 
figure, we use the estimated architecture speedup for the 
SIMD computation instructions. 

  
4.  Summary 

 
A performance estimation method for using new 

media instructions is presented. Instead of using cycle-
accurate simulation, the proposed method estimates 
execution times with new media instructions based on 
characterization media workload with benchmarking and 
measurement on existing systems. Given a range of 
performance improvement of the new media instructions, 
the proposed method can provide a range of speedups of 
using the new media instructions. A simple case study is 
provided to verify the proposed method. 
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Figure 7.  The Total Execution Time and Speedup with 
Respect to Performance of Data Moves 
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