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Abstract: The increasing popularity in multimedia
applications provokes microprocessors to include media-
enhancement instructions. In this paper, we describe a
methodology to estimate performance improvement of a new
set of media instructions on emerging applications based on
workload characterization and measurement. Application
programs are characterized into a sequential segment, a
vectorizable segment, and extra data moves for utilizing the
SIMD capability of new media instructions. Techniques
based on benchmarking and measurements on existing
systems are used to estimate the execution time of each
segment. Based on the measurement results, the speedup
and the additional data moves of using the new media
instructions can be estimated to help processor architects
and designers evaluate different design tradeoffs.

1. Introduction

Digital signal and multimedia processing becomes
increasingly popular in many microprocessor applications.
Today, almost all the commercial microprocessors, from
ARM to Pentium processors, have some types of media-
oriented enhancement. For example, the MMX technology
has been introduced to the Intel x86 architecture and
implemented in Pentium processors [12]. A set of 57
instructions is added to treat data in a Single-Instruction-
Multiple-Data (SIMD) fashion. These instructions exploit
the data parallelism at sub-word granularity that is often
available in digital signal processing or multimedia
applications [10].

Performance improvement of using the media-enhanced
instructions, such as the MMX technology, is based on three
main factors: the amount of data parallelism in applications
that can be exploited by the MMX instructions; the
granularity of the sub-word parallelism that each MMX
instruction can exploit; and the matching of data structure
stored in memory and used in MMX registers in order to
utilize the MMX instruction capabilities. The third factor
involves moving data between MMX registers, and to/from
memory or regular registers, which incur additional delays

in using the MMX instructions and can offset the overall
performance improvement.

One essential issue in defining the media-extension
instructions is their ability to exploit parallelism in emerging
multimedia applications to achieve certain performance
target. Performance evaluation of a new set of media
instructions on applications is critical to assess architectural
tradeoffs for the new media instructions. The traditional
cycle-accurate simulation is a time-consuming process that
requires detailed processor models to handle both regular
and new SIMD media instructions. In addition, proper
methods are needed to generate executable binary codes for
the new media-extension instructions to drive the simulator.
In this paper, we describe a methodology of estimating
performance improvement of new media instructions based
on workload characterization and measurement. The
proposed method allows processor architects and media
experts to quickly estimate the speedup of some emerging
applications with a few additional media instructions to the
existing instruction set architecture. A uniqueness of this
approach is that we only need existing hardware; no cycle-
accurate simulator is required.

The basic approach involves several steps. First, a set of
multimedia application programs and their equivalent codes
with new SIMD instructions are developed. Second, each
application program is characterized into three execution
segments that include the sequential segment, the segment
of the code that can be vectorized by a set of new SIMD
instructions, and the explicit data-move segment for new
media instructions. Third, based on timing measurement on
existing systems, the execution time of each segment can be
calculated. Finally, the total execution time of an application
with additional SIMD instructions can be estimated from the
execution times of the three segments. The sequential time
will remain unchanged with new multimedia instructions.
The execution time of the vectorizable segment can be
extrapolated according to the architecture speedup of the
new SIMD instructions. The execution time of the data-
move segments will depend on the memory hierarchy
performance for the data-move instructions.



The proposed method is experimented on Intel Pentium
III systems using the equipped MMX technology. To
simplify our experiment, we treat several existing MMX
arithmetic and logic instructions as new MMX instructions.
We further assume that there is no new data move
instructions to accommodate for the new set of MMX
instructions. In a case study using an inverse discrete cosine
transform (IDCT) program, the estimated execution time
based on our methodology is within 7\% of the measured
execution time. Besides a single estimated execution time,
the proposed method can also provide sensitivity studies for
a range of speedups based on the performance improvement
of new MMX instructions to help architects make design
decisions.

The paper is organized as follows. The proposed
performance estimation method is described in the next
section. This is followed by a case study using the IDCT
program on an existing system to verify the method. A
summary will be given at the end.

2. Workload Characterizations and Measurement

In the proposed method, three program segments:
sequential, vectorizable, and data moves, must be able to
characterized separately. The execution time of each
segment is derived from the timing measurement on an
existing system, where the new set of media SIMD
instructions are not available. In this section, we describe
detailed steps to accomplish the proposed task. The Intel
MMX technology is used as the basis of our experiment.
We refer the arithmetic, logical, comparison, and shift
media instructions as the computation instructions, while the
data-manipulation instructions, such as MOVE, PACK and
UNPACK, as the data-move instructions.

2.1. Estimating Speedup for MMX

The fundamental performance advantage of using
SIMD media instructions is similar to parallel programming
on vector machines, where the Amdahl’s Law can estimate
the speedup of an application:
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fis fraction of the program that can be vectorized, and n is
the ideal speedup of f.

In using the MMX technology, programmers must
explicitly insert the needed data-move instructions to/from
MMX registers for the computation instructions. These
data-move instructions can be characterized separately to
improve the execution time estimation. Furthermore, in the
vectorized segment, several program constructs such as loop

controls and procedure calls may not be able to take the
advantage of the MMX instructions. Therefore, we can
modify the Amdahl's formula to accommodate the MMX
technology. This formula will be used as the basis in our
estimation method.
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Speedup =

O is portion of the code in the vectorizable segment that
cannot be replaced by MMX instructions; D represents the
fraction of the data-move instructions; and m is the speedup
of the data moves.

2.2. Data Move with Rearrangement

There are a limited number of media registers, i.e. 8,
each with a limited width, i.e. 64 bits in the MMX
technology. These limitations along with the restriction on
how SIMD computation instructions can operate on these
registers often creates a gap between the normal data lay-out
in memory and the format that the data needs to be arranged
in the media registers.
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Figure 1. Data Arrangement in Registers for Matrix/Vector
Multiplication

Figure 1 illustrates an example of simple matrix/vector
multiplication using two MMX instructions. The Packed-
Multiply-and-Add (PMADDWD) performs four 16-bits
multiplications and two additions to produce two 32-bit
partial sums. In conjunction with another PMADDWD and
a Packed-Add (PADDD), two elements in the resulting
vector can be obtained as shown in the figure. In this



example, each row of the matrix and the multiplicand vector
registers to take advantages of the PADDD instructions.
This odd data arrangement makes MMX programming
difficult. In addition, the extra data arrangement incurs
performance penalties that need to be considered in
estimating the speedup for adding any new media SIMD
instructions.

In contrast, a more natural data arrangement can be
accomplished as shown in Figure 2. The entire source vector
and each row of the matrix are moved into separate MMX
registers for the PMADDWD. To accomplish this, a new
PADDD must be invented that adds the corresponding high-
order and low-order 32-bit of each of the two source
registers to produce the two vector elements in the
destination MMX register. However, depending on the
subsequent computations, further data rearrangement may
still be needed even with the new PADDD instruction.
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Figure 2. Another Way of Data Arrangement in Registers
for Matrix/Vector Multiplication

2.3. Workload Vectorization and Benchmarking

An 8x8 Inverse-Discrete-Cosine-Transform (IDCT) is
selected as a case study to demonstrate the proposed
performance estimation method. The IDCT is widely used
in image and video compression/decompression and has
been implemented with the MMX technology [3, 4, 11, 13].
The IDCT program we selected is based on Chen's
algorithm that is more suitable for exploiting the MMX
technology [1]. The 2-dimension IDCT is decomposed into
row-column method of 1-dimension 8-point IDCT. The
idct_row, which represents a majority of the total execution
time, is selected for vectorization in our experiment.

In the first step, the IDCT program (written in C, also
referred as the C-code), and its equivalent vectorized MMX
code (referred as the MMX-code), are developed. The MMX-
code includes new SIMD computation instructions along
with necessary data-move instructions. In order to test the
proposed method on an existing system, four computation

must be split and duplicated in the corresponding MMX
instructions, PMADDWD, PADDD, PSUBD, and PSRAD
are assumed to be new to the current MMX instruction set.
The MMX-code should be optimized to exploit the SIMD
capability. We refer this step as a vectorization step because
of its similarity with respect to developing vector code for
vector machines.

The MMX-code, with new MMX instructions, iS not
able to run on the current system. Therefore, we also
develop another equivalent MMX code (referred as the
Pseudo MMX-code). The Pseudo MMX-code includes all
the data move instructions as that in the original MMX-code,
along with equivalent MMX-like C instructions for the
SIMD computation instructions. Figure 3 shows a portion of
the MMX-code from idct_row that has been vectorized and
its equivalent Pseudo MMX-code. In the Pseudo MMX-code,
the replacement C-code must be perfectly mapped to the
corresponding MMX instructions. This Pseudo MMX-code,
without any new MMX instructions, can now run on an
existing system and produces correct execution results.

The equivalent C-code is first executed on a host
system with the equipped MMX technology. Several time
components are measured including the total execution
time, the time required for the sequential segment (/-f),
and the time required for the vectorizable segment (f). Note
that we use the notations from the modified Amdahl’s Law
to refer to the respective timing components. The IDCT
code is executed one million times to collect all the timing
information. The reported timing is an average of 10
separate runs.

The next step is to estimate the time (D) needed for the
data move instructions. The data move is required for the
new computation instructions. The execution time of the
Pseudo MMX-code is measured on the host Pentium III
system. The difference of the execution times between the
equivalent C-code and the Pseudo MMX-code can provide
the estimated time (D) of the data moves.! To verify that
all the data moves in the Pseudo MMX-code are indeed
executed, we use the performance tool gprof [14] to
collect the execution count of each instruction. In general,
multimedia applications have very deterministic program
control flows, adding a few data moves does not alter the
execution flow of the program.

Similarly, the computation instructions in the MMX-
code can be removed without replacing them by the
equivalent C instructions. This Cripple-code will not
generate correct results because of the removed
computation instructions. Again, using gprof, we can
verify that all the remaining instructions are executed when

" The lowest compiler optimization level is used to make
sure the dummy data moves are not removed.
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Figure 3. IDCT and Its Vectorized Code using MMX Technology




we measure the execution time for this Cripple-code. The
measured execution time represents the sequential code (/-
/) plus the data moves (D) that are associated with the
MMX-code. Therefore, the difference of the execution
times between the Cripple-code and the Pseudo MMX-
code can provide the estimated execution time (f-O) for the
vectorizable portion of the C-code. This vectorizable
portion of the total execution time is the main target for
improvement with new SIMD computation instructions.

The vectorizable portion (f-O) of the C-code can be
different from the original vectorizable segment (f). A few
program constructs, such as loop controls and procedure
calls, may exist in the vectorizable segment, but cannot be
vectorized by the MMX instructions. The execution time
(O) of this unvectorizable portion can be estimated by
subtracting the time (f-O) of the vectorizable portion of the
C-code from the time (f) of the original vectorizable
segment.

2.4. Performance Projection and Verification

Figure 4 illustrates different components of the four
types of program code used in the proposed methodology.
The sequential (/-f) and vectorizable (f) segments of the
equivalent C-code are identified and their execution times
are measured. The MMX-code is developed with additional
data moves (D) for the new MMX instructions. The

Pseudo-MMX code replaces the new MMX instructions
with the equivalent C instructions (f-O). The Cripple-code
removes the new MMX instructions from the MMX-code.
Given the execution time of different type of codes through
measurement, we can compute the execution time for
individual components except for the new MMX
instructions because the MMX-code cannot run on an
existing system.

We can now estimate the total execution time and the
speedup using the new set of computation instructions.
According to the modified Amdahl's formula, the estimated
execution time is equal to the summation of the sequential
execution time (/-f), the extra unvectorizable time (O), the
time spent on all the new computation instructions (f / n),
and the time takes for moving the data to/from the MMX
registers (D / m). The time spent on new computation
instructions can be extrapolated by dividing the measured
vectorizable timing of the C-code from an architecture
speedup factor (n) for the new computation instructions.
Due to the complexity in estimating memory hierarchy
performance, it is more difficult to estimate the time
change factor (m) for the data moves. One way to remedy
this difficulty is to present a sensitivity study. A range of
estimated execution times for different memory delays can
help gaining insights on the overall impact of new MMX
instructions.
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Figure 4. Timing Components of Four Types of Code
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Figure 5. An Example of C Code Segment and Its Assembly Code

To verify the proposed methodology, we pretend that
there are four “new” SIMD computation instructions,
PMADDWD, PADDD, PSUBD and PSRAD. The estimated
total execution time can be verified against the measurement
time of the MMX-code on the host system. (Note that this
step is not possible for true new instructions.) Due to the
complexity of processor pipeline designs, it is difficult to
accurately estimate the speedup factor (n) of the new
computation instructions. One alternative approach is to
draw a speedup curve based on a range of architecture
speedups of the new SIMD instructions. Such a speedup
curve, along with the estimated data move overhead can
help architects to make proper design tradeoffs.

Several steps have taken for estimating the speedups
of the new SIMD instructions. First, the assembly-level
code is examined for each new SIMD instruction. Figure 5
shows a C code segment with its corresponding assembly
code. This example performs two multiplications and one
addition. Using a PMADDMD can benefit a pair of these C
instructions. In addition to the two multiplications and one
addition, there are several data moves generated by the
compiler to move data in and out of registers. In contrast,
the programmer explicitly controls the necessary data moves
when the PMADDWD is used. Note that by using
PMADDMD, we not only put multiple multiplications and
additions together in one instruction, but also group a
number of memory accesses in one data move instruction.
Since the explicit data moves for the PMADDWD are
counted separately in our method, the implicit data moves in
the assembly code must take into consideration in
calculating the speedup for the PMADDMD.

Second, instructions can be executed together in the
target Pentium III system with multiple dispatch ports. Each
assembly instruction incurs certain delays as specified in the
Pentium architecture book. We can estimate the execution

latency of the assembly to obtain the estimated speedup
factor (). The details are omitted and can be found in [2].

Third, the above steps are carried out for each new
SIMD instruction to obtain the respective speedup.
Afterwards, we can calculate the weighted average speedup
by counting the number of occurrences of each SIMD
instruction in the idct_row. An example of estimating the
average speedup will be given in the next section.

3. Case Study Results

The IDCT is used as a case study for experimenting
the proposed method. We focus on vectorizing idct_row
using the new PMADDWD, PADDD, PSUBD, and PSRAD
instructions. We assume that the idct _column has been
vectorized using the existing MMX technology and is
considered as the sequential code segment. The performance
timing results from the measurement and projections are
summarized in Table 1.

The total execution time the C-code takes 1.56
seconds. The sequential segment takes 0.13 seconds, while
the vectorizable segment takes 1.43 seconds. Therefore, we
are dealing with over 90% of the code that is vectorizable.
The Pseudo MMX code takes 1.69 seconds. By subtracting
the time of the C-code from the time of the Pseudo MMX
code, we can get the estimated delay of 0.13 seconds for the
data moves. Although the data moves represent a small
portion of the total execution time for the Pseudo MMX
code, it will be more significant for the MMX-code if the
delay remains a constant.

With the measured 0.38 seconds of the Cripple-code,
we can calculate the vectorizable portion of the C-code by



taking the 0.38 seconds out of the 1.69 seconds of the
Pseudo MMX code. The result of 1.31 seconds is the
portion of the code that can be speeded up by the new
SIMD instructions. We can also calculated the time for the
unvectorizable portion of the code by taking the time for
the sequential segment and the data moves away from the
time for the Cripple-code. Finally, the total estimated
execution time can be calculated; the result is equal to
0.5419 seconds. Comparing with the measured execution
time for the MMX-code, the estimated time is about 7%
off the measurement target.

In the above calculations, we use an estimated

Table 2, each PMADDWD equivalent C code takes 14
cycles, which is analyzed based on the assembly code
using the architectural information of the current system.
The new MMX instruction will take only 1 cycle. The
system architect can provide the cycle count information
for the new media instructions. Hence the estimated
speedup of PMADDWD is 14. The speedups of other new
SIMD instructions can be estimated similarly [2]. We can
calculate a weighted speedup by averaging the sum of the
products of the individual speedup and the number of
occurrences of the SIMD instructions in the program.

(14%8+4%24+4%4455%4+5%4)

architecture speedup of 8.09 based on the execution cycles WeightedSpeedup = 22
from Intel’s Reference Manuals [5, 6, 7, 8, 9]. As shownin  _ 8.09
Program Timing Component Time (sec)
1. C-code Sequential (idct_col) + Vectorizable portion 1.56
(idct_row) + Unvectorizable (calls in idct_row)
Sequential (idct_col) 0.13
Vectorizable portion (idct_row) + Unvectorizable 1.43
2. Pseudo MMX code Sequential (idct_col) + Vectorizable portion 1.69
(Computation MMX is (idct_row) + Moves + Unvectorizable
replaced by C-equivalent) | Moves = (2) - (1) = 1.69 - 1.56 0.13
3. Crippled MMX code Sequential (idct_col) + Moves + Unvectorizable 0.38
(Computation MMX is Vectorizable portion = (2) — (3) = 1.69 - 0.38 1.31
removed) Unvectorizable = (3) — Sequential (idct_col) — Moves 0.12
=0.38-0.13-0.13
4. Estimated Execution Total = (0.13 + 0.12 + 0.13) + 1.31/8.09 0.5419
time (8.09 is the estimated speedup for new MMX)
5. Overall Speedup 1.56/0.5419 2.878
6. Measured MMX code Sequential (idct_col) + Unvectorizable + New MMX 0.505
(for verification purpose) + Moves

Table 1. Performance Measurement and Proijection — A Case Study, IDCT

Code Segment Operations C code MMX Speedup | Number of
Cycles Cycles Occurrence

pmaddwd for 4 multiply 14 1 14 8
a0-b3 2 add
paddwd for 2 add 4 1 4 2
rounder
paddwd for 2 add 4 1 4 4
a0-b3
paddwd and 2 add, or 5 1 5.5 2
psubwd, row[] 2 subtract 6 1 2
prad, row([] 5 1 5 4

Table 2. Estimated Speedup for New SIMD Instructions
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Figure 6. The Total Execution Time and Speedup with
Respect to Performance of New SIMD Instructions

Figure 6 plots the overall execution time and speedup
given improvements of the computation instructions. In
this figure, we assume the time for the data moves remain
unchanged. With 2 times of performance improvement for
the new computation instructions, the overall speedup is
close to 1.5, while the speedup is over 2.5 given 10 times
improvement of the computation instructions. The data
moves along take about 8% of the total execution time
without any improvement on the vectorizable code. The
percentage increases to 26% when the new computation
instructions get 10 times of performance improvement.

We also did a sensitivity study on the data move
overhead. As shown in Figure 7, with 30% more penalty
for the data moves, the speedup is reduced from 2.9 to 2.7.
On the other hand, the speedup increases from 2.9 to 3.1 if
the data move overhead can be reduced by 30%. In this
figure, we use the estimated architecture speedup for the
SIMD computation instructions.

4. Summary

A performance estimation method for using new
media instructions is presented. Instead of using cycle-
accurate simulation, the proposed method estimates
execution times with new media instructions based on
characterization media workload with benchmarking and
measurement on existing systems. Given a range of
performance improvement of the new media instructions,
the proposed method can provide a range of speedups of
using the new media instructions. A simple case study is
provided to verify the proposed method.
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