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Abstract—Modern out-of-order processors with non-blocking dependences and packs them together for fast traversal and
caches exploit Memory-Level Parallelism (MLP) by overlapping prefetching. With software help, the push-pull scheme [27, 28]
cache misses in a wide instruction window. Exploitation d¥ILP, places these tightly dependent pointer loads in a prefetcher

however, can be limited due to long-latency operations in g cer 1o the memory to reduce the interconnect delay. A
producing the base address of a cache miss load. When the pare . i h h b d i 111 Th
instruction is also a cache miss load, a serialization of thet loads ~ S'M#ar —approac as been presented in [11]. e

must be enforced to satisfy the load-load data dependence.tiis ~ content-aware data prefetcher [9] identifies potential pointers
paper, we describe a special Preload that is issued inapk of the by examining word-based content of a missed data block. The

dependent load without waiting for the parent load, thus identified pointers are used to initiate prefetching of the
effectively overlapping the two loads. The Preload provides gccessor nodes. Using the same mechanism to identify pointer
necessary information for the memory controller to calculate the loads, the pointer-cache approach [8] builds a correlation

correct memory address upon the availability of the parent’s dat . .
to eliminate any interconnect delay between the two loads. history between heap pointers and the addresses of the heap

Performance evaluations based on SPEC2000 and OldenObjects they point to. A prefetch is issued when a pointer load
applications show that significant speedups ranging 2-50%ith  misses the data cache, but hits the pointer cache.
an average of 16% are achievable by using the aggressive MLP |n this paper, we introduce a new approach to exploit MLP
exploitation method. among nearby loads even when load-load dependences exist
among them. After dispatch, if the base register of a load is not
ready due to an early cache miss load, a spegrilbad
(referred asP-load) is issued in place of the dependent load.
The P-load instructs the memory controller to calculate the
1 Introduction needed address once the pare_:nt load’s data is ava!lable from the
_ DRAM array. The inherent interconnect delay in memory
Memory latency presents a classical performancg.cess can thus be overlapped regardless the location of the
bottleneck. Studies show that for SPEC2000 benchmarksmory controller [2]. When executing pointer-chasing loads,
running on modern microprocessors, over half of the time js sequence of P-loads can be initiated according to the
spent on stalling loads that miss the second-level (L2) Cacﬁ‘@patching speed of these loads.

[15, 26]. This problem will be exacerbated in future processorsthe nroposed P-load makes three unique contributions. First,
with widening gaps and increasing demands between procesgOfontrast to the existing methods, it does not require any

and memory [24]. It is essential to explitemory-Level gpecial predictors and/or any software-inserted prefetching
Parallelism (MLP)[7] by overlapping multiple cache misses inyints. |nstead, the P-load scheme issues the dependent load
awi(.:Ie.instruction window. Exploitation of MLP, however, Carbarly following the instruction stream. Second, the P-load
be limited due to a load that depends on another load éQpIoits more MLP from a larger instruction window without
produce the base address (referrelbad-load dependencks he need to enlarge the critical issuing window [1]. Third, an

A cache miss of the parer_1t load forces gequentlal_executlon_%%anced memory controller with proper processing power is
the two loads. One typical example is the pointer-chasingoqyced that can share certain computations with the
problem in many applications with linked data structures,cessor. Performance evaluations based on SPEC2000 [23]
where accessing the successor node cannot start until e ojden [18] applications on modified SimpleScalar

pointer is available, possibly from memory. Similarly, indirecim,iation tools [3] show that significant speedups of 2-50%
accesses to large array structures may face the samerprobl e achievable with an average about 16%.
when both address and data accesses encounter cache misseg, g paper is organized as follows. Section 2 demonstrates

There have been several prefetching techniques to redyte,rmance loss due to missing MLP opportunities. Section 3
penalties on consecutive cache misses involved loads with ti bvides a detailed description of the proposed P-load scheme.

load-load dependences [17, 16, 19, 27, 25, 4, 9, 8, 28]. Rl (ion 4 describes the evaluation methodology. This is

example, the dependence-based prefetching scheme [38bwed by performance evaluations and comparisons in
dynamically identifies nearby pointer loads with tight

Index Terms—Instruction/Issue Window, Memory-Level
Parallelism, Pointer-Chasing Loads, Data Prefetching.



Section 5. Related works are summarized in Section 6. A br
conclusion is given in Section 7.

2 Missing MLP Opportunities

Overlapping cache misses can reduce the performance |
from long-latency memory operations. A data dependence tl
exists between a load and an early instruction may stall the Ic
from issuing. In this section, we will show the performance los
due to existence of such data dependences in real applicatic

An idealized scheme to exploit MLP is simulated. This ide:
MLP exploitation assumes no delay of issuing any cache m

load after it is dispatched regardless of whether the be. ...
Long refresh_potential (network_t *net)

register is ready or which instruction, if exists, the basesteyi
depends on. Nine workload#icf, Twolf, Vpr, Gcc-200,
Parser,and Gce-scilabfrom SPEC2000 integer applications,
andHealth, Mst,andEm3dfrom Olden applications [18] are
selected for the experiment because of their high L2 miss rat
An Alpha 21264-like processor with 1MB L2 cache is
simulated. Detailed descriptions of the simulation model wi
be given in Section 4.

Fig. 1 shows the measured MLP of the base and the id
schemes where the MLP is defined as the average humbe
memory requests during the period when there is at least ¢
outstanding memory request [7]. The base MLP is obtain
when data dependences are correctly enforced within t
instruction window. As observed, there are huge gaps betwe
the base and the ideal MLPs, especially ¥of, Gce-200,
Parser, Gcce-scilab, Healthand Mst. Thus, significant MLP
improvement can be expected, when the delay of issuing cau
misses can be reduced.

3 Overlapping Cache Misses with P-loads

In this section, we describe the P-load scheme using }

example function Refresh_potentialfrom Mcf (Fig. 2).
Refresh_potentiak invoked frequently to refresh a huge tres
structure that exceeds 4MB. The tree is initialized with
regular stride pattern among adjacent nodes on the travel
path. However, the tree structure is slightly modified betwee
two adjacent visits. After a period of time, the address patte
on the traversal path becomes irregular and is difficult
predict accurately.

The function traverses a structure with three travesal link
child, pred,andsibling (highlighted initalics), and accesses
basic records with a data lifkasic_arc In the first innewhile
loop, the execution traverses down the path through the lir
node>child. With accurate branch predictions, severe
iterations of thevhile loop can be initiated in a wide instruction
window. The recurrent instructiomode = node>child that
advances the pointer to the next node, becomes a poter
bottleneck since accesses of the records in the next node n
wait until the pointer (base address) of the node is available.
shown in Fig. 3 (a), four consecutimede = node>child must
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Fig. 1. Gaps between base and ideal MLP exploitations

tmp = node = root->child;
while (node != root) {
while (node) {
if (node->orientation == UP)
node->potential =
+

node-
node-

>basi c_ar c->cost

>pr ed->potential;

else {
node->potential =

checksum++; }

node-
node-

>pr ed->potential
>basi c_ar c->cost;

tmp = node;

node = node- >chi | d;
}
node = tmp;
while ( node- >pr ed) {

tmp = node- >si bl i ng;
if (tmp) {
node = tmp;
break; }
else node = node- >pr ed;

}
}

return checksum;

Fig. 2. Example tree-traversal function frdvhef
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Fig. 3. Pointer Chasing: (a) Sequential accesses; (b) Pipeline
using P-loads

DRAM array, and receiving the data. These non-overlapped

be executed sequentially. In the case of a cache miss, eaclPBg latency memory accesses can congest the instruction issue
them encounters delays in sending the request, accessingwilow and stall the processor.



Instruction Window

Memory Request Window

Request

ID Instr. - ID | Link | Offset |Address | Disp

Type ID |Disp
101 | lw $v0,28($a0) Load [28($a0)] - | - New| — —  [[28($a0)]| —
102 | bne $v0,$a3,L1 105 | New | 32($a0) 16
103 | Iw $v0,32($a0) (partial hit) 106 | New | 8($a0) 44
104 | lw $v1,8($a0) (partial hit) 113 | New |12($a0) 28
105 | lw $v0,16($v0) P-load [addr(103)] [105 | 16 114 | New |12($a0) 32
106 | Iw $v1,44($v1) P-load [addr(104)] [106 |44 115 | New |12($a0) 8
107 | addu $v0,$v0,$v1 116 | 114 | 32(3a0) 16
108 | J L2 117 | 115 | 8($a0) 44
109 | sw $v0,44($a0) 118 | — —  [12(8a0)]| —
110 | addu $v0,$0,$a0
111 | lw $a0,12($a0) | (partial hit)
112 | bne $a0,$0,LO
113 | lw $v0,28($a0) P-load [addr(111)] [113 |28
114 | lw $v0,32($a0) P-load [addr(111)] [114 |32 -
115 | Iw $v1,8($a0) | P-load [addr(111)] [115 | 8 gjjfe?:ﬁg;’;;g;?fﬁggg;fﬁ
116 | lw $v0,16($v0) P-load [p-id(114)] |116 | 16 or P-load Buffer
117 | lw $v1,44($v1) P-load [p-id(115)] [117 | 44

Note, thick lines divide iterations

118 | lw $a0,12($a0) | P-load [addr(111)] [118 | 12

Fig. 4. Example of issuing P-loads seamlessly without load address

On the other hand, the proposed P-load can effectivedimilar to the fourth. The sixth loally $a0,12($a0)advances
overlap the interconnect delap sending/receiving data asthe pointer and is also a partial hit to the first load.
shown in Fig. 3 (b). In the following subsections, detailed The instruction window moves to the second iteration with a
descriptions of identifying and issuing the P-loads are giverorrect branch prediction. The first three loads in the second
first, and then the design of the memory controller. Severi&tration all depend omv $a0,12($a0)n the previous iteration.
issues and enhancement related to the P-loads will also Tieee P-loads are issued accordingly using the address of the
discussed. parent load. The fourth and fifth loads, however, depend on

. early loads that are themselves also P-loads without addresses.

3.1 Issuing P-Loads In this case, special P-loads with an invalid address are issued.

We will describe P-loads issuing and execution within thghe parent load ID$id), 114 and 115 for the fourth and fifth
instruction windowand thememory request windoffig. 4) by  |oads respectively, are encoded in the address fields to instruct
walking through the first inner while loop offresh-potential the memory controller for obtaining correct base addresses.
from Mcf (Fig. 2). Assume the first loatly $v0,28($a0)js a This process continues across the entire instruction window to
miss and is issued normally. The second and third loagsue a sequence of P-loads seamlessly.
encounter a partial hit to the same line as the first load, thus noThe P-load does not occupy a separate location in the
memory request is issued. After the fourth lodd; recorder buffer, nor does it keep a record in the MSHR. Similar
$v0,16($v0) is dispatched, a search through the currefd other memory-side prefetchers [22], the returned data block
instruction window finds a dependence on the second lwad,must come with the address. The processor searches and
$v0,32($a0) Normally, the fourth load must stall. In thesatisfies any existing memory requests located in the MSHR
proposed method, however, a special P-load will be insertggon receiving a P-load block from memory. The block is then
into a smallP-load issue windowWhen the hit/miss of the put into cache if it is not already there. Searching the MSHR is
parent load is known, an associative search for dependent loageded since the P-load cannot stop other requests that target
in theP-load issue windovs performed. All dependent P-loadsthe same block. The regular load, from which a P-load was
are either ready to be issued (if the parent load is a miss),ifitiated, will be issued normally when the base register is
canceled (if the parent is a hit). The P-load consists of thgady from its parent load.
address of the parent load, the displacement, and a unique .
instruction ID to instruct the memory controller for calculating®-2 Memory Controller Design
the address and fetching the correct block. Details of theFig. 5 illustrates the basic design of the memory controller.
memory controller will be given in Section 3.2. The fifth load iDRAM accesses are processed and issued inmia@ory



Memory Controller DRAM Arrays 3.3 Issues and Enhancement

r———--- - " Chamnal | There are many essential issues that need to be resolved for
Rogular miss | .Queve | implementing the P-load efficiently.

Maintaining Base Register Identity:The base register of a
gualified P-load may experience renaming or constant
increment/decrement after the parent load. These indirect
P-load J_H—,a dependences can be easily identified and established by proper
Request | adjustment to the displacement value of the P-load.

Seduencer l——— - Address Translation at Memory ControllerThe memory
1 3 [ controller must perform virtual to physical address translations
1 | | Cache Return : for the P-load in order to access the physical memory. A
@E Pirecter Quee | shadowed TLB can be maintained in the memory controller for
e T—- o this purpose (Fig. 5). The processor issues a TLB update to the
Memory Bus ” memory controller whenever a TLB miss occurs and the new
address translation is available. The TLB consistency can be
Fig. 5. The basic design of the memory controller  handled similarly to that in a multiprocessor environment. A
P-load is simply dropped upon a TLB miss.

Reducing Excessive Memory RequestsSince P-load is
offset for the base address, thdisplacementvalue for issued without the memory address, it may generqte
computing the target block address, and the dependiaice unnecessary memory traffic if the target block is already i

cache, or when multiple requests address to the same data

are recorded for each request in their arriving order. For : . . )
. . : block. Three approaches are considered in this paper. First,
normal cache miss, the address and a unique ID assigned by the . : ;
When a regular miss request arrives, all outstanding P-loads are

request sequencare recorded. Such miss requests will access arched. In the case of a match, the P-load is changed to a

) e
the DRAM array without delay as soon as the target DRAﬁjgular miss for saving variable delays. Second, a small P-load
e

X . ; r
cha_mnel 's open. The regular miss may be merged_wnh an eq¥rer (Fig. 5) buffers the data blocks for recent P-loads. A fast
active P-load that targets the same block to achieve reduc .

access to the buffer occurs when the requested block is located

penalties. in the buffer. Third, a topologically equivalent cache directory

Two different procedures are applied when a P-load arrlVeoS[;the lowest cache level is maintained to predict cache b#/mi

First, when the P-load comes with a valid address, the blofc N . )
. . r filtering the returned blocks. By capturing cache misses,
address is used to search for any existing memory reque§

Upon a match, a dependence link is establishedoffset _ﬁoads, and dlrty-block wntgbacks, the memory-side cache
directory can predict cache hits accurately.

within the block is used to access the correct word from theInconsistent Data Blocks between Caches and Memory:
parent’s data block without the need to access the DRAM%\ Y:

|
P-load .|
Request Buffer "
Window ¢ |

<

-—r—_————— e — — — — — =

A

request windowsimilar to the out-of-order execution in
processor’s instruction window. The memaaydress the

. imilar her memory-si refetchin hni P-l
the case of no match, the address that comes with the P-lo milar to other memory-side prefetching techniques, P-loads

i . .
used to access the DRAM as illustrated by request 1 feh the blOCk.S without khowmg.whether the blocks are

. ; ready located in cache. It is possible to fetch a stale €opy i
assuming that the first request has been removed from ﬁ]le

. ) € block is located in caches in the modified state. In general,
memory window. Second, when the P-load comes without g

: . . tRe staled copy is likely to be dropped either by a cache-hit
yalld address, the depepdence link encod.ed in the address fbergjdiction or by searching through the directory before
is extracted and saved in the corresponding entry as shown by, . .

ts 116 and 117 (Fia. 4). In thi th t bd ating the cache. However, in a rather rare case when a
requests an (Fig. 4). In this case, the correc "Flnn?edified block is writeback to the memory, this modified block

addresses can be obtained f_rom 116's and %173 par?wst be detected against outstanding P-loads to avoid fetching
requests, 114 and 115, respectively. The P-load is droppe(%lhle stale data

the parent P-load is no longer in the request window.

Once a memory block is fetched, all dependent P-loads will .
be woken up. For example, the availability of thew block Evaluation Methodology
will trigger P-loads 105, 106, 113, 114, and 115 as shown inWe modified the SimpleScalar simulator to model an 8-wide
Fig. 4. The target word in the block can be retrieved arsyiperscalar, out-of-order processor with Alpha 21264-like
forwarded to the dependent loads. The memory address of pigeline stages [14]. Important simulation parameters are
dependent P-load is then calculated by adding the target wsttmmarized in Table 1.
(base address) with the displacement value. The P-load block idline workloads,Mcf, Twolf, Vpr, Gce-200, Parseand
fetched if the block has not been in the request window. TKec-scilabfrom SPEC2000 integer applications, atealth,
fetched P-load block in turn triggers its dependent P-loads.Mst,andEm3dfrom Olden applications are selected because of
memory request will be removed from the window after theigh L2 miss rates as ordered according to their appearances.
data block is sent. Pre-compiled little-endian Alpha ISA binaries are downloaded



Table 1. Simulation parameters 3

O Base
Processor s @ Content-limit o
o 5 +| ocontentbest f--------------————————1
Fetch/Decode/lssue/Commit Width: 8 Erilwilbiced
Instruction Fetch Queue: 8 o | ®Poads |}

Branch Predictor: 64K-entry G-share, 4K-entry BTB )
Mis-Prediction Penalty: 10 cycles = ’ / |
RUU/LSQ size: 512/512 I A (- R ----- - -
Inst./P-load Issue Window: 32/16
Processor TLB: 2K-entry, 8-way
Integer ALU: 6 ALU (1 cycle); 2 Mult/Div: Mult (3 o | 7

cycles), Div (20 cycles) Mcf Twolf Vpr Gce- Parser Gee- Health Mst  Em3d
FP ALU: 4 ALU (2 cycles); 2 Mult/Div/Sqrt: Mult (4 200 setlab

cycles), Div (12 cycles), Sqrt (24 cycles) @

Memory System

L1 Inst./Data Cache: 64KB?/4-\)//vay, 64B Line, 2 cycles LG N L L LR
L1 Data Cache Port: 4 read/write port
L2 Cache: 1MB, 8-way, 64B Line, 15 cycles
L1/L2 MSHRs: 16/16
Req./DRAM/Data Latency: 80/160/80
Memory Channel: 4 with line-based interleaved
Memory Request Window: 32
Channel/Return Queue: 8/8
P-load Buffer: 16-entry, fully associative
Memory TLB: 2K-entry, 8-way

Cache-Hit Prediction: 8-way, 16K-entry (same as L2)

A

[
'

o
®

o
IS

Normalized Ave. Memory Access Time
I I
N )

o
4

Twolf  Vpr Gcee- Parser Gcece- Health  Mst
200 scilab

(b)
Fig. 6. Performance comparisons: (a) IPCs; (b) Average
memory access time

from [21]. We follow the studies done in [20] to skip certair
instructions, warm up caches and other system compone

with 100 million instructions, and then collect statistics frony .., .+ (Pload-ng and with Pload-1§ a 16-entry P-load
the next 500 million instructions. o _ buffer. Generally, the P-load shows better performance.
_A processor-sidestride prefetcher is included in all Compared with théasemodel, thePload-16shows speedups
simulated models [10]. To demonstrate the performan%qe 28%, 5%, 2%, 14%. 6%, 17%, 50%, 13% and 14% for the

advantage of t.he P-Ioaq, the h|storylmtent-awaredqta respective workloads. In comparison with @entent-bestthe
prefetcher [9] is also simulated. We search exhaustively Boad-16 performs better by 11%, 4%, 2%, 2%, -8%, 11%,

determine thevidth (number of adjacent blocks) and thepth 250, 16%, and 12%. The P-load is most effective when the

(Ievel of prefetching) Of_ the prefetcher for best performa.n(iﬁorkload traverses linked data structures with tight load-load
improvement. Two configurations are selected. In the I'm'te&iependences such Bief. Gee-200. Gee-scilab. Health. Mst

option Content-limit; width=1, depth=), a single block is  5n4EmM3d The content-aware scheme, on the other hand, can
prefetched for each identified pointer from searchmgamssspefetch more load-load dependent blocks beyond the

data block, i.e. both Width and depth are eiqual to 1. In tri}'?!struction window. For example, the traversal listParser
best-performance optiorContent-best; width=3, depth34 o very short, and thus provide limited room for issuing

three adjacent blocks starting from the target block of eaglloads. For this workload, th€ontent-bestshows better

identified pointer are fetched. The prefetched block initiatqﬁ]provemem Lastly, the results show that a 16-entry P-load

content-aware prefetching up to the fourth level. O,th%uffer provides about 1-7% performance improvement with an
prefetchers are excluded due to the need of huge h'St%R)’erage about 3%

information and/or software prefetching help. To further understand the P-load effect, we compare the

normalized average memory access times of various schemes

5 Performance Results in Fig. 6 (b). The improvement of the average memory access
) time matches the IPC improvement very well. In general, the
5.1 Speedup Comparison P-load reduces the memory access delays significantly. We

Fig. 6 summarizes the IPCs and the average memory accgisserve 10-30% reductions of memory access delalylédy
times for the base model, the content-aware prefetchingGcc-200, Gee-scilab, Health, MstndEm3d.
(Content-limit and Content-best and the P-load schemes
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Fig. 7. Miss coverage and extra traffic

. . such aggressive and incorrect prefetching actually increase the
5.2 Miss Coverage and Extra Traffic overallg?nisses due to cachz poIIutio?l. Fl'e)ar)s/er, the

In Fig. 7, the miss coverage and total traffic are plotted. Tl®bntent-besbut-performs théPload-16that is accomplished
total traffic is classified into four categories: missesssm with 5 times memory traffic. In many workloads, the
reductions (i.e. successful P-load or prefetches), exiGontest-besgenerates high percentages of wasted prefetches.
prefetches, and wasted prefetches. The sum of the misses pidexample foParser, the cache prediction at the memory
miss reductions is equal to the baseline misses withaséntroller is very accurate with only 0.6% false-negative
prefetching, which is normalized to 1. The extra prefetcprediction (predicted hit, actual miss) and 3.2% false-positive
represents the prefetched blocks that are replaced before prstiiction (predicted miss, actual hit). However, the total

reference. The wasted prefetches are referring to tpgedicted misses are 10%, which makes 30% of the return
prefetched blocks that are presented in cache already. P-load blocks wasted.

Except forTwolfandVpr, the P-load reduces 20-80% overall .
misses. These miss reductions are accomplished with litfle3 ~Sensitivity Study
extra data traffic because the P-load is issued according to th&o reduce memory latency, a recent trend is to integrate the
instruction stream. Among the workloaddealth has the memory controller into the processor die with reduced
highest miss reduction. It simulates health-care systemsausirigterconnect delay [2]. However, in a multiple processor-die
4-way B-tree structure. Each node in the B-tree consists obgstem, significant interconnect delay is still encountered in
link-list with patient records. At the memory controller, eaclaccessing another memory controller located offaidig. 8
pointer-advance P-load usually wakes up a large number (aj, the IPC speedups of the P-load with different interconnect
dependent P-loads ready to access DRAM. At the processletays are plotted. The delay indeed impacts the overall IPC
side, the return of a parent load normally triggers dependeagnificantly. Nevertheless, the P-load still demonstrates
loads after their respective blocks are available fromyeangperformance improvement even with fast interconnect. The
P-loadsMcf, on the other hand, has much simpler operatiomerage IPC improvements of the nine workloads are 18%,
on each node visit. The return of a parent load may initiate thé%, 13%, and 8% with 100-, 80-, 60-, and 40-cycle delays
dependent loads before the blocks are ready from ear@spectively.
P-loads. Therefore, about 20% of the misses have reduced@he scope of the MLP exploitation with P-load is confined
penalties due to the early P-loadBwolf and Vpr show within the instruction window. In Fig. 8 (b), the IPC speedups
insignificant miss reductions because of very small amount of the P-load with four window sizes: 128, 256, 384, and 512
tight load-load dependences. are plotted. The advantage of larger windows is very obvious

The content-aware prefetcher generates a large amountsioice the bigger the instruction window, the better the MLP can
extra traffic for aggressive data prefetching. FaolfandVpr, be exploited using the P-load. It is important to point out that



prefetches, a chain of prefetches based on a pair-wise

16
040 cycles @60 cycles correlation history can be pushed from memory. Accuracy and

15 llmsocyces mioocyces] ™ W00 memory traffic, however, remain difficult issues. To overlap

1.4 1 load-load dependent misses, a cooperative hardware-software

approach called push-pull uses a hardware prefetch engine to
execute software-inserted pointer-based instructions ahead of
the actual computation to supply the needed data [27, 28]. A
similar approach has been presented in [11].

A stateless, content-aware data prefetcher identifies
potential pointers by examining word-based content of a

=
w
,

IPC Speedup
- -
P~ N

=
L

09 missed data block and eliminates the need to maintain a huge
08 et ot vor | Geo. pareer Goo. et et Emad miss history [9]. After the prefetching of the target memory
"0 scilab block by a hardware-identified pointer, a match of the block
address with the content of the block can recognize any other
@ pointers in the block. The newly identified pointer can trigger a
16 01128 entries. W 256 entries chain_ of prefetches. Howe\_/e_r, to ove_rlap long-latency _in
15 4 _ g sending the request and receiving the pointer data for a chain of
14 9334 eniries WO12 entries dependent load-loads, the stateless prefetcher needs to be

implemented at the memory side. Both virtual and physical
addresses are required in order to identify pointers in a block.
Furthermore, by prefetching all identified pointers

continuously, the accuracy issue still exists. Using the same
mechanism to identify pointer loads, the pointer-cache
approach [8] builds a correlation history between heap pointers

IPC Speedup
o o
= N w

=
L

0.9 and the addresses of the heap objects they point to. A prefetch
0.8 is issued when a pointer load misses the data cache, but hits the
Mef  Twolf  Vpr GZ%; Parser SGci; Health Mst Em3d pointer cache. Additional complications occur when the
pointer values are updated.
(b) The proposed P-load abandons the traditional approach of

redicting prefetches with huge miss histories. It also gives up

he idea of using hardware and/or software to discover special
pointer instructions. With deep instruction windows in future
out-of-order processors, the proposed approach easily
issuing P-loads is independent of the issue window size. In dadéntifies existing load-load dependences in the instruction
simulation, the issue window size remains at 32 for all fowtream that may delay the dependent loads. By issuing a P-load

Fig. 8. Sensitivity of P-load with respect to: (a) interconnec
delay; (b) instruction window size

instruction windows. in place of the dependent load, any pointer-chasing, or indirect
addressing that causes serialized memory access, can be
6 Related Work overlapped to effectively exploit memory-level parallelism.

There have been many software and hardware orientChe ex_ecuti_on-driven P_-Ioad can precis_ely preload the needed
prefetching proposals for alleviating performance penalties gipek since it does not involve any prediction.
cache misses [13, 6, 16, 12, 27, 25, 4, 22, 9, 8, 26, 28, 11]. )
Traditional hardware-oriented sequential or stride-based Conclusion
prefetchers work well for applications with regular memory Processor performance is significantly hampered by limited
access patterns [6, 13]. However, in many modern applicatioigP exploitation due to the serialization of loads that are
and runtime environments, dynamic memory allocations ami@pendent on one another and miss the cache. The proposed
linked data structure accesses are very common. It is difficgpecial P-load has demonstrated its ability to effectively
to accurately prefetch due to their irregular address patterogerlap these loads. Instead of relying on miss predictions of
Correlated and Markov prefetchers [5, 12] record patterns tfe requested blocks, the execution-driven P-load precisely
miss addresses and use the past miss correlations to pregistructs the memory controller in fetching the needed data
future cache misses. These approaches require a huge hisitdogk non-speculatively. The simulation results demonstrate
table to record the past miss correlations. Besides, thésigh accuracy and significant speedups using the P-load.
prefetchers also face challenges in providing accurate and
timely prefetches. 8 Acknowledgement
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