
 

Abstract—Modern out-of-order processors with non-blocking 
caches exploit Memory-Level Parallelism (MLP) by overlapping 
cache misses in a wide instruction window. Exploitation of MLP, 
however, can be limited due to long-latency operations in 
producing the base address of a cache miss load. When the parent 
instruction is also a cache miss load, a serialization of the two loads 
must be enforced to satisfy the load-load data dependence. In this 
paper, we describe a special Preload that is issued in place of the 
dependent load without waiting for the parent load, thus 
effectively overlapping the two loads. The Preload provides 
necessary information for the memory controller to calculate the 
correct memory address upon the availability of the parent’s data 
to eliminate any interconnect delay between the two loads. 
Performance evaluations based on SPEC2000 and Olden 
applications show that significant speedups ranging 2-50% with 
an average of 16% are achievable by using the aggressive MLP 
exploitation method. 
 

Index Terms—Instruction/Issue Window, Memory-Level 
Parallelism, Pointer-Chasing Loads, Data Prefetching.  
 

1 Introduction 
Memory latency presents a classical performance 

bottleneck. Studies show that for SPEC2000 benchmarks 
running on modern microprocessors, over half of the time is 
spent on stalling loads that miss the second-level (L2) cache 
[15, 26]. This problem will be exacerbated in future processors 
with widening gaps and increasing demands between processor 
and memory [24]. It is essential to exploit Memory-Level 
Parallelism (MLP) [7] by overlapping multiple cache misses in 
a wide instruction window. Exploitation of MLP, however, can 
be limited due to a load that depends on another load to 
produce the base address (referred as load-load dependences). 
A cache miss of the parent load forces sequential executions of 
the two loads. One typical example is the pointer-chasing 
problem in many applications with linked data structures, 
where accessing the successor node cannot start until the 
pointer is available, possibly from memory. Similarly, indirect 
accesses to large array structures may face the same problem 
when both address and data accesses encounter cache misses. 

There have been several prefetching techniques to reduce 
penalties on consecutive cache misses involved loads with tight 
load-load dependences [17, 16, 19, 27, 25, 4, 9, 8, 28]. For 
example, the dependence-based prefetching scheme [19] 
dynamically identifies nearby pointer loads with tight 

dependences and packs them together for fast traversal and 
prefetching. With software help, the push-pull scheme [27, 28] 
places these tightly dependent pointer loads in a prefetcher 
closer to the memory to reduce the interconnect delay. A 
similar approach has been presented in [11]. The 
content-aware data prefetcher [9] identifies potential pointers 
by examining word-based content of a missed data block. The 
identified pointers are used to initiate prefetching of the 
successor nodes. Using the same mechanism to identify pointer 
loads, the pointer-cache approach [8] builds a correlation 
history between heap pointers and the addresses of the heap 
objects they point to. A prefetch is issued when a pointer load 
misses the data cache, but hits the pointer cache. 

In this paper, we introduce a new approach to exploit MLP 
among nearby loads even when load-load dependences exist 
among them. After dispatch, if the base register of a load is not 
ready due to an early cache miss load, a special preload 
(referred as P-load) is issued in place of the dependent load. 
The P-load instructs the memory controller to calculate the 
needed address once the parent load’s data is available from the 
DRAM array. The inherent interconnect delay in memory 
access can thus be overlapped regardless the location of the 
memory controller [2]. When executing pointer-chasing loads, 
a sequence of P-loads can be initiated according to the 
dispatching speed of these loads.  

The proposed P-load makes three unique contributions. First, 
in contrast to the existing methods, it does not require any 
special predictors and/or any software-inserted prefetching 
hints. Instead, the P-load scheme issues the dependent load 
early following the instruction stream. Second, the P-load 
exploits more MLP from a larger instruction window without 
the need to enlarge the critical issuing window [1]. Third, an 
enhanced memory controller with proper processing power is 
introduced that can share certain computations with the 
processor. Performance evaluations based on SPEC2000 [23] 
and Olden [18] applications on modified SimpleScalar 
simulation tools [3] show that significant speedups of 2-50% 
are achievable with an average about 16%.  

This paper is organized as follows. Section 2 demonstrates 
performance loss due to missing MLP opportunities. Section 3 
provides a detailed description of the proposed P-load scheme. 
Section 4 describes the evaluation methodology. This is 
followed by performance evaluations and comparisons in 
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Section 5. Related works are summarized in Section 6. A brief 
conclusion is given in Section 7. 

2 Missing MLP Opportunities   
Overlapping cache misses can reduce the performance loss 

from long-latency memory operations. A data dependence that 
exists between a load and an early instruction may stall the load 
from issuing. In this section, we will show the performance loss 
due to existence of such data dependences in real applications.  

An idealized scheme to exploit MLP is simulated. This ideal 
MLP exploitation assumes no delay of issuing any cache miss 
load after it is dispatched regardless of whether the base 
register is ready or which instruction, if exists, the base register 
depends on. Nine workloads, Mcf, Twolf, Vpr, Gcc-200, 
Parser, and Gcc-scilab from SPEC2000 integer applications, 
and Health, Mst, and Em3d from Olden applications [18] are 
selected for the experiment because of their high L2 miss rates. 
An Alpha 21264-like processor with 1MB L2 cache is 
simulated. Detailed descriptions of the simulation model will 
be given in Section 4. 

Fig. 1 shows the measured MLP of the base and the ideal 
schemes where the MLP is defined as the average number of 
memory requests during the period when there is at least one 
outstanding memory request [7]. The base MLP is obtained 
when data dependences are correctly enforced within the 
instruction window. As observed, there are huge gaps between 
the base and the ideal MLPs, especially for Mcf, Gcc-200, 
Parser, Gcc-scilab, Health, and Mst. Thus, significant MLP 
improvement can be expected, when the delay of issuing cache 
misses can be reduced. 

3 Overlapping Cache Misses with P-loads 
In this section, we describe the P-load scheme using an 

example function Refresh_potential from Mcf (Fig. 2). 
Refresh_potential is invoked frequently to refresh a huge tree 
structure that exceeds 4MB. The tree is initialized with a 
regular stride pattern among adjacent nodes on the traversal 
path. However, the tree structure is slightly modified between 
two adjacent visits. After a period of time, the address pattern 
on the traversal path becomes irregular and is difficult to 
predict accurately. 

The function traverses a structure with three travesal links: 
child, pred, and sibling (highlighted in italics), and accesses 
basic records with a data link, basic_arc. In the first inner while 
loop, the execution traverses down the path through the link: 
node�child. With accurate branch predictions, several 
iterations of the while loop can be initiated in a wide instruction 
window. The recurrent instruction, node = node�child that 
advances the pointer to the next node, becomes a potential 
bottleneck since accesses of the records in the next node must 
wait until the pointer (base address) of the node is available. As 
shown in Fig. 3 (a), four consecutive node = node�child must 
be executed sequentially. In the case of a cache miss, each of 
them encounters delays in sending the request, accessing the 

DRAM array, and receiving the data. These non-overlapped 
long latency memory accesses can congest the instruction issue 
window and stall the processor. 

 
Fig. 3.  Pointer Chasing: (a) Sequential accesses; (b) Pipeline 

using P-loads 

Long refresh_potential (network_t *net) 
{ 
 .....  
  tmp = node = root->child; 
  while (node != root) { 
    while (node) { 
      if (node->orientation == UP) 
        node->potential = node->basic_arc->cost 
                        + node->pred->potential; 
      else {   
        node->potential = node->pred->potential  
                        – node->basic_arc->cost; 
        checksum++; } 
      tmp = node; 
      node =  node->child; 
    } 
    node = tmp; 
    while ( node->pred) { 
      tmp =  node->sibling; 
      if (tmp) { 
        node = tmp; 
        break; } 
      else node =  node->pred;  
    } 
  } 
  return checksum; 

}  

Fig. 2.  Example tree-traversal function from Mcf 
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On the other hand, the proposed P-load can effectively 

overlap the interconnect delay in sending/receiving data as 
shown in Fig. 3 (b). In the following subsections, detailed 
descriptions of identifying and issuing the P-loads are given 
first, and then the design of the memory controller. Several 
issues and enhancement related to the P-loads will also be 
discussed. 

3.1 Issuing P-Loads  
We will describe P-loads issuing and execution within the 

instruction window and the memory request window (Fig. 4) by 
walking through the first inner while loop of refresh-potential 
from Mcf (Fig. 2). Assume the first load, lw $v0,28($a0), is a 
miss and is issued normally. The second and third loads 
encounter a partial hit to the same line as the first load, thus no 
memory request is issued. After the fourth load, lw 
$v0,16($v0), is dispatched, a search through the current 
instruction window finds a dependence on the second load, lw 
$v0,32($a0). Normally, the fourth load must stall. In the 
proposed method, however, a special P-load will be inserted 
into a small P-load issue window. When the hit/miss of the 
parent load is known, an associative search for dependent loads 
in the P-load issue window is performed. All dependent P-loads 
are either ready to be issued (if the parent load is a miss), or 
canceled (if the parent is a hit). The P-load consists of the 
address of the parent load, the displacement, and a unique 
instruction ID to instruct the memory controller for calculating 
the address and fetching the correct block. Details of the 
memory controller will be given in Section 3.2. The fifth load is 

similar to the fourth. The sixth load, lw $a0,12($a0), advances 
the pointer and is also a partial hit to the first load. 

The instruction window moves to the second iteration with a 
correct branch prediction. The first three loads in the second 
iteration all depend on lw $a0,12($a0) in the previous iteration. 
Three P-loads are issued accordingly using the address of the 
parent load. The fourth and fifth loads, however, depend on 
early loads that are themselves also P-loads without addresses. 
In this case, special P-loads with an invalid address are issued. 
The parent load IDs (p-id), 114 and 115 for the fourth and fifth 
loads respectively, are encoded in the address fields to instruct 
the memory controller for obtaining correct base addresses. 
This process continues across the entire instruction window to 
issue a sequence of P-loads seamlessly.  

The P-load does not occupy a separate location in the 
recorder buffer, nor does it keep a record in the MSHR. Similar 
to other memory-side prefetchers [22], the returned data block 
must come with the address. The processor searches and 
satisfies any existing memory requests located in the MSHR 
upon receiving a P-load block from memory. The block is then 
put into cache if it is not already there. Searching the MSHR is 
needed since the P-load cannot stop other requests that target 
the same block. The regular load, from which a P-load was 
initiated, will be issued normally when the base register is 
ready from its parent load.  

3.2 Memory Controller Design 
Fig. 5 illustrates the basic design of the memory controller. 

DRAM accesses are processed and issued in the memory 

ID Instr. Request101105104103102 lw  $v0,28($a0)bne  $v0,$a3,L1lw  $v0,32($a0)lw  $v0,16($v0)lw  $v1,8($a0)lw  $v1,44($v1)addu $v0,$v0,$v1J  L2sw  $v0,44($a0)addu $v0,$0,$a0lw  $a0,12($a0)bne  $a0,$0,L0
Load [28($a0)]TypeP-load [addr(103)]
P-load [p-id(114)]

ID Disp(partial hit)(partial hit) 105 16111110109108107106
116115114113112117118

P-load [addr(104)] 106 44(partial hit)lw  $v0,28($a0)lw  $v0,32($a0)lw  $v1,8($a0)lw  $v0,16($v0)lw  $v1,44($v1) lw  $a0,12($a0) P-load [addr(111)]P-load [addr(111)]P-load [addr(111)]P-load [p-id(115)]P-load [addr(111)] 117116115114113118 124416 83228
[28($a0)]IDNew106105  Address DispNew 4416118117116115114113 115114 4416 83228[12($a0)]*

Instruction Window Memory Request Window
* Assume New removed, 118 uses    address [12($a0)] to fetch DRAM   or P-load Buffer

LinkNewNewNew Offset
32($a0)8($a0)12($a0)12($a0)32($a0)8($a0)12($a0)New

Note, thick lines divide iterations
 

Fig. 4.  Example of issuing P-loads seamlessly without load address 
 



 

request window similar to the out-of-order execution in 
processor’s instruction window. The memory address, the 
offset for the base address, the displacement value for 
computing the target block address, and the dependence link, 
are recorded for each request in their arriving order. For a 
normal cache miss, the address and a unique ID assigned by the 
request sequencer are recorded. Such miss requests will access 
the DRAM array without delay as soon as the target DRAM 
channel is open. The regular miss may be merged with an early 
active P-load that targets the same block to achieve reduced 
penalties.    

Two different procedures are applied when a P-load arrives. 
First, when the P-load comes with a valid address, the block 
address is used to search for any existing memory requests. 
Upon a match, a dependence link is established; the offset 
within the block is used to access the correct word from the 
parent’s data block without the need to access the DRAM. In 
the case of no match, the address that comes with the P-load is 
used to access the DRAM as illustrated by request 118 
assuming that the first request has been removed from the 
memory window. Second, when the P-load comes without a 
valid address, the dependence link encoded in the address field 
is extracted and saved in the corresponding entry as shown by 
requests 116 and 117 (Fig. 4). In this case, the correct base 
addresses can be obtained from 116’s and 117’s parent 
requests, 114 and 115, respectively. The P-load is dropped if 
the parent P-load is no longer in the request window. 

Once a memory block is fetched, all dependent P-loads will 
be woken up. For example, the availability of the New block 
will trigger P-loads 105, 106, 113, 114, and 115 as shown in 
Fig. 4. The target word in the block can be retrieved and 
forwarded to the dependent loads. The memory address of the 
dependent P-load is then calculated by adding the target word 
(base address) with the displacement value. The P-load block is 
fetched if the block has not been in the request window. The 
fetched P-load block in turn triggers its dependent P-loads. A 
memory request will be removed from the window after the 
data block is sent.  

3.3 Issues and Enhancement 
There are many essential issues that need to be resolved for 

implementing the P-load efficiently.  
Maintaining Base Register Identity:  The base register of a 

qualified P-load may experience renaming or constant 
increment/decrement after the parent load. These indirect 
dependences can be easily identified and established by proper 
adjustment to the displacement value of the P-load. 

Address Translation at Memory Controller:  The memory 
controller must perform virtual to physical address translations 
for the P-load in order to access the physical memory. A 
shadowed TLB can be maintained in the memory controller for 
this purpose (Fig. 5). The processor issues a TLB update to the 
memory controller whenever a TLB miss occurs and the new 
address translation is available. The TLB consistency can be 
handled similarly to that in a multiprocessor environment. A 
P-load is simply dropped upon a TLB miss.  

Reducing Excessive Memory Requests:  Since P-load is 
issued without the memory address, it may generate 
unnecessary memory traffic if the target block is already in 
cache, or when multiple requests address to the same data 
block. Three approaches are considered in this paper. First, 
when a regular miss request arrives, all outstanding P-loads are 
searched. In the case of a match, the P-load is changed to a 
regular miss for saving variable delays. Second, a small P-load 
buffer (Fig. 5) buffers the data blocks for recent P-loads. A fast 
access to the buffer occurs when the requested block is located 
in the buffer. Third, a topologically equivalent cache directory 
of the lowest cache level is maintained to predict cache hit/miss 
for filtering the returned blocks. By capturing cache misses, 
P-loads, and dirty-block writebacks, the memory-side cache 
directory can predict cache hits accurately. 

Inconsistent Data Blocks between Caches and Memory:  
Similar to other memory-side prefetching techniques, P-loads 
fetch the blocks without knowing whether the blocks are 
already located in cache. It is possible to fetch a stale copy if 
the block is located in caches in the modified state. In general, 
the staled copy is likely to be dropped either by a cache-hit 
prediction or by searching through the directory before 
updating the cache. However, in a rather rare case when a 
modified block is writeback to the memory, this modified block 
must be detected against outstanding P-loads to avoid fetching 
the stale data. 

4 Evaluation Methodology 
We modified the SimpleScalar simulator to model an 8-wide 

superscalar, out-of-order processor with Alpha 21264-like 
pipeline stages [14]. Important simulation parameters are 
summarized in Table 1.  

Nine workloads, Mcf, Twolf, Vpr, Gcc-200, Parser, and 
Gcc-scilab from SPEC2000 integer applications, and Health, 
Mst, and Em3d from Olden applications are selected because of 
high L2 miss rates as ordered according to their appearances. 
Pre-compiled little-endian Alpha ISA binaries are downloaded 

 

Fig. 5.  The basic design of the memory controller 
 



 

from [21]. We follow the studies done in [20] to skip certain 
instructions, warm up caches and other system components 
with 100 million instructions, and then collect statistics from 
the next 500 million instructions.  

A processor-side stride prefetcher is included in all 
simulated models [10]. To demonstrate the performance 
advantage of the P-load, the historyless content-aware data 
prefetcher [9] is also simulated. We search exhaustively to 
determine the width (number of adjacent blocks) and the depth 
(level of prefetching) of the prefetcher for best performance 
improvement. Two configurations are selected. In the limited 
option (Content-limit; width=1, depth=1), a single block is 
prefetched for each identified pointer from searching a missed 
data block, i.e. both width and depth are equal to 1. In the 
best-performance option (Content-best; width=3, depth=4), 
three adjacent blocks starting from the target block of each 
identified pointer are fetched. The prefetched block initiates 
content-aware prefetching up to the fourth level. Other 
prefetchers are excluded due to the need of huge history 
information and/or software prefetching help. 

5 Performance Results 

5.1 Speedup Comparison 
Fig. 6 summarizes the IPCs and the average memory access 

times for the base model, the content-aware prefetching  
(Content-limit and Content-best) and the P-load schemes 

without (Pload-no) and with (Pload-16) a 16-entry P-load 
buffer. Generally, the P-load shows better performance. 
Compared with the base model, the Pload-16 shows speedups 
of 28%, 5%, 2%, 14%, 6%, 17%, 50%, 13% and 14% for the 
respective workloads. In comparison with the Content-best, the 
Pload-16 performs better by 11%, 4%, 2%, 2%, -8%, 11%, 
25%, 16%, and 12%. The P-load is most effective when the 
workload traverses linked data structures with tight load-load 
dependences such as Mcf, Gcc-200, Gcc-scilab, Health, Mst, 
and Em3d. The content-aware scheme, on the other hand, can 
prefetch more load-load dependent blocks beyond the 
instruction window. For example, the traversal lists in Parser 
are very short, and thus provide limited room for issuing 
P-loads. For this workload, the Content-best shows better 
improvement. Lastly, the results show that a 16-entry P-load 
buffer provides about 1-7% performance improvement with an 
average about 3%. 

To further understand the P-load effect, we compare the 
normalized average memory access times of various schemes 
in Fig. 6 (b). The improvement of the average memory access 
time matches the IPC improvement very well. In general, the 
P-load reduces the memory access delays significantly. We 
observe 10-30% reductions of memory access delay for Mcf, 
Gcc-200, Gcc-scilab, Health, Mst, and Em3d.  

0

0.5

1

1.5

2

2.5

3

Mcf Tw olf Vpr Gcc-
200

Parser Gcc-
scilab

Health Mst Em3d

IP
C

Base
Content-limit
Content-best
Pload-no
Pload-16

(a)

0

0.2

0.4

0.6

0.8

1

1.2

Mcf Tw olf Vpr Gcc-
200

Parser Gcc-
scilab

Health Mst Em3d

N
o
rm

al
iz

ed
 A

ve
. M

em
o
ry

 A
cc

es
s 

T
im

e 

Content-limit Content-best Pload-no Pload-16

 
(b) 

Fig. 6.   Performance comparisons:  (a) IPCs; (b) Average 
memory access time 

Table 1.  Simulation parameters 
Processor 

Fetch/Decode/Issue/Commit Width: 8 
Instruction Fetch Queue: 8 
Branch Predictor: 64K-entry G-share, 4K-entry BTB   
Mis-Prediction Penalty: 10 cycles 

RUU/LSQ size: 512/512   
Inst./P-load Issue Window: 32/16 
Processor TLB: 2K-entry, 8-way 
Integer ALU:  6 ALU (1 cycle); 2 Mult/Div: Mult (3  

cycles), Div (20 cycles) 
FP ALU:   4 ALU (2 cycles);  2 Mult/Div/Sqrt: Mult (4 

cycles), Div (12 cycles), Sqrt (24 cycles) 
Memory System 

L1 Inst./Data Cache: 64KB, 4-way, 64B Line, 2 cycles 
L1 Data Cache Port: 4 read/write port 
L2 Cache: 1MB, 8-way, 64B Line, 15 cycles 
L1/L2 MSHRs: 16/16 
Req./DRAM/Data Latency: 80/160/80 
Memory Channel: 4 with line-based interleaved 
Memory Request Window: 32 
Channel/Return Queue: 8/8 
P-load Buffer: 16-entry, fully associative 
Memory TLB: 2K-entry, 8-way 
Cache-Hit Prediction: 8-way, 16K-entry (same as L2) 

 



 

 
 

5.2 Miss Coverage and Extra Traffic 
 In Fig. 7, the miss coverage and total traffic are plotted. The 

total traffic is classified into four categories: misses, miss 
reductions (i.e. successful P-load or prefetches), extra 
prefetches, and wasted prefetches. The sum of the misses and 
miss reductions is equal to the baseline misses without 
prefetching, which is normalized to 1. The extra prefetch 
represents the prefetched blocks that are replaced before any 
reference. The wasted prefetches are referring to the 
prefetched blocks that are presented in cache already.  

Except for Twolf and Vpr, the P-load reduces 20-80% overall 
misses. These miss reductions are accomplished with little 
extra data traffic because the P-load is issued according to the 
instruction stream. Among the workloads, Health has the 
highest miss reduction. It simulates health-care systems using a 
4-way B-tree structure. Each node in the B-tree consists of a 
link-list with patient records. At the memory controller, each 
pointer-advance P-load usually wakes up a large number of 
dependent P-loads ready to access DRAM. At the processor 
side, the return of a parent load normally triggers dependent 
loads after their respective blocks are available from early 
P-loads. Mcf, on the other hand, has much simpler operations 
on each node visit. The return of a parent load may initiate the 
dependent loads before the blocks are ready from early 
P-loads. Therefore, about 20% of the misses have reduced 
penalties due to the early P-loads. Twolf and Vpr show 
insignificant miss reductions because of very small amount of 
tight load-load dependences. 

The content-aware prefetcher generates a large amount of 
extra traffic for aggressive data prefetching. For Twolf and Vpr, 

such aggressive and incorrect prefetching actually increase the 
overall misses due to cache pollution. For Parser, the 
Content-best out-performs the Pload-16 that is accomplished 
with 5 times memory traffic. In many workloads, the 
Contest-best generates high percentages of wasted prefetches. 
For example for Parser, the cache prediction at the memory 
controller is very accurate with only 0.6% false-negative 
prediction (predicted hit, actual miss) and 3.2% false-positive 
prediction (predicted miss, actual hit). However, the total 
predicted misses are 10%, which makes 30% of the return 
P-load blocks wasted.  

5.3 Sensitivity Study 
To reduce memory latency, a recent trend is to integrate the 

memory controller into the processor die with reduced 
interconnect delay [2]. However, in a multiple processor-die 
system, significant interconnect delay is still encountered in 
accessing another memory controller located off-die. In Fig. 8 
(a), the IPC speedups of the P-load with different interconnect 
delays are plotted. The delay indeed impacts the overall IPC 
significantly. Nevertheless, the P-load still demonstrates 
performance improvement even with fast interconnect. The 
average IPC improvements of the nine workloads are 18%, 
16%, 13%, and 8% with 100-, 80-, 60-, and 40-cycle delays 
respectively. 

The scope of the MLP exploitation with P-load is confined 
within the instruction window. In Fig. 8 (b), the IPC speedups 
of the P-load with four window sizes: 128, 256, 384, and 512 
are plotted. The advantage of larger windows is very obvious 
since the bigger the instruction window, the better the MLP can 
be exploited using the P-load. It is important to point out that 
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Fig. 7.  Miss coverage and extra traffic 



 

issuing P-loads is independent of the issue window size. In our 
simulation, the issue window size remains at 32 for all four 
instruction windows. 

6 Related Work  
There have been many software and hardware oriented 

prefetching proposals for alleviating performance penalties on 
cache misses [13, 6, 16, 12, 27, 25, 4, 22, 9, 8, 26, 28, 11]. 
Traditional hardware-oriented sequential or stride-based 
prefetchers work well for applications with regular memory 
access patterns [6, 13]. However, in many modern applications 
and runtime environments, dynamic memory allocations and 
linked data structure accesses are very common. It is difficult 
to accurately prefetch due to their irregular address patterns. 
Correlated and Markov prefetchers [5, 12] record patterns of 
miss addresses and use the past miss correlations to predict 
future cache misses. These approaches require a huge history 
table to record the past miss correlations. Besides, these 
prefetchers also face challenges in providing accurate and 
timely prefetches.  

A memory-side correlation-based prefetcher moves the 
prefetcher to the memory controller [22]. To handle timely 

prefetches, a chain of prefetches based on a pair-wise 
correlation history can be pushed from memory. Accuracy and 
memory traffic, however, remain difficult issues. To overlap 
load-load dependent misses, a cooperative hardware-software 
approach called push-pull uses a hardware prefetch engine to 
execute software-inserted pointer-based instructions ahead of 
the actual computation to supply the needed data [27, 28]. A 
similar approach has been presented in [11].  

A stateless, content-aware data prefetcher identifies 
potential pointers by examining word-based content of a 
missed data block and eliminates the need to maintain a huge 
miss history [9]. After the prefetching of the target memory 
block by a hardware-identified pointer, a match of the block 
address with the content of the block can recognize any other 
pointers in the block. The newly identified pointer can trigger a 
chain of prefetches. However, to overlap long-latency in 
sending the request and receiving the pointer data for a chain of 
dependent load-loads, the stateless prefetcher needs to be 
implemented at the memory side. Both virtual and physical 
addresses are required in order to identify pointers in a block. 
Furthermore, by prefetching all identified pointers 
continuously, the accuracy issue still exists. Using the same 
mechanism to identify pointer loads, the pointer-cache 
approach [8] builds a correlation history between heap pointers 
and the addresses of the heap objects they point to. A prefetch 
is issued when a pointer load misses the data cache, but hits the 
pointer cache. Additional complications occur when the 
pointer values are updated. 

The proposed P-load abandons the traditional approach of 
predicting prefetches with huge miss histories. It also gives up 
the idea of using hardware and/or software to discover special 
pointer instructions. With deep instruction windows in future 
out-of-order processors, the proposed approach easily 
identifies existing load-load dependences in the instruction 
stream that may delay the dependent loads. By issuing a P-load 
in place of the dependent load, any pointer-chasing, or indirect 
addressing that causes serialized  memory access, can be 
overlapped to effectively exploit memory-level parallelism. 
The execution-driven P-load can precisely preload the needed 
block since it does not involve any prediction. 

7 Conclusion  
Processor performance is significantly hampered by limited 

MLP exploitation due to the serialization of loads that are 
dependent on one another and miss the cache. The proposed 
special P-load has demonstrated its ability to effectively 
overlap these loads. Instead of relying on miss predictions of 
the requested blocks, the execution-driven P-load precisely 
instructs the memory controller in fetching the needed data 
block non-speculatively. The simulation results demonstrate 
high accuracy and significant speedups using the P-load. 
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