

Abstract—Modern out-of-order processors with non-blocking
caches exploit Memory-Level Parallelism (MLP) by overlapping
cache misses in a wide instruction window. Exploitation of MLP,
however, can be limited due to long-latency operations in
producing the base address of a cache miss load. When the parent
instruction is also a cache miss load, a serialization of the two loads
must be enforced to satisfy the load-load data dependence. In this
paper, we describe a special Preload that is issued in place of the
dependent load without waiting for the parent load, thus
effectively overlapping the two loads. The Preload provides
necessary information for the memory controller to calculate the
correct memory address upon the availability of the parent’s data
to eliminate any interconnect delay between the two loads.
Performance evaluations based on SPEC2000 and Olden
applications show that significant speedups ranging 2-50% with
an average of 16% are achievable by using the aggressive MLP
exploitation method.

Index Terms—Instruction/Issue Window, Memory-Level
Parallelism, Pointer-Chasing Loads, Data Prefetching.

1 Introduction
Memory latency presents a classical performance

bottleneck. Studies show that for SPEC2000 benchmarks
running on modern microprocessors, over half of the time is
spent on stalling loads that miss the second-level (L2) cache
[15, 26]. This problem will be exacerbated in future processors
with widening gaps and increasing demands between processor
and memory [24]. It is essential to exploit Memory-Level
Parallelism (MLP) [7] by overlapping multiple cache misses in
a wide instruction window. Exploitation of MLP, however, can
be limited due to a load that depends on another load to
produce the base address (referred as load-load dependences).
A cache miss of the parent load forces sequential executions of
the two loads. One typical example is the pointer-chasing
problem in many applications with linked data structures,
where accessing the successor node cannot start until the
pointer is available, possibly from memory. Similarly, indirect
accesses to large array structures may face the same problem
when both address and data accesses encounter cache misses.

There have been several prefetching techniques to reduce
penalties on consecutive cache misses involved loads with tight
load-load dependences [17, 16, 19, 27, 25, 4, 9, 8, 28]. For
example, the dependence-based prefetching scheme [19]
dynamically identifies nearby pointer loads with tight

dependences and packs them together for fast traversal and
prefetching. With software help, the push-pull scheme [27, 28]
places these tightly dependent pointer loads in a prefetcher
closer to the memory to reduce the interconnect delay. A
similar approach has been presented in [11]. The
content-aware data prefetcher [9] identifies potential pointers
by examining word-based content of a missed data block. The
identified pointers are used to initiate prefetching of the
successor nodes. Using the same mechanism to identify pointer
loads, the pointer-cache approach [8] builds a correlation
history between heap pointers and the addresses of the heap
objects they point to. A prefetch is issued when a pointer load
misses the data cache, but hits the pointer cache.

In this paper, we introduce a new approach to exploit MLP
among nearby loads even when load-load dependences exist
among them. After dispatch, if the base register of a load is not
ready due to an early cache miss load, a special preload
(referred as P-load) is issued in place of the dependent load.
The P-load instructs the memory controller to calculate the
needed address once the parent load’s data is available from the
DRAM array. The inherent interconnect delay in memory
access can thus be overlapped regardless the location of the
memory controller [2]. When executing pointer-chasing loads,
a sequence of P-loads can be initiated according to the
dispatching speed of these loads.

The proposed P-load makes three unique contributions. First,
in contrast to the existing methods, it does not require any
special predictors and/or any software-inserted prefetching
hints. Instead, the P-load scheme issues the dependent load
early following the instruction stream. Second, the P-load
exploits more MLP from a larger instruction window without
the need to enlarge the critical issuing window [1]. Third, an
enhanced memory controller with proper processing power is
introduced that can share certain computations with the
processor. Performance evaluations based on SPEC2000 [23]
and Olden [18] applications on modified SimpleScalar
simulation tools [3] show that significant speedups of 2-50%
are achievable with an average about 16%.

This paper is organized as follows. Section 2 demonstrates
performance loss due to missing MLP opportunities. Section 3
provides a detailed description of the proposed P-load scheme.
Section 4 describes the evaluation methodology. This is
followed by performance evaluations and comparisons in

MLP Exploitation with Seamless Preload

Zhen Yang, Xudong Shi, Feiqi Su and Jih-Kwon Peir

Computer and Information Science and Engineering
University of Florida

Gainesville, FL 32611, USA
{zhyang, xushi, fsu, peir}@cise.ufl.edu

Section 5. Related works are summarized in Section 6. A brief
conclusion is given in Section 7.

2 Missing MLP Opportunities
Overlapping cache misses can reduce the performance loss

from long-latency memory operations. A data dependence that
exists between a load and an early instruction may stall the load
from issuing. In this section, we will show the performance loss
due to existence of such data dependences in real applications.

An idealized scheme to exploit MLP is simulated. This ideal
MLP exploitation assumes no delay of issuing any cache miss
load after it is dispatched regardless of whether the base
register is ready or which instruction, if exists, the base register
depends on. Nine workloads, Mcf, Twolf, Vpr, Gcc-200,
Parser, and Gcc-scilab from SPEC2000 integer applications,
and Health, Mst, and Em3d from Olden applications [18] are
selected for the experiment because of their high L2 miss rates.
An Alpha 21264-like processor with 1MB L2 cache is
simulated. Detailed descriptions of the simulation model will
be given in Section 4.

Fig. 1 shows the measured MLP of the base and the ideal
schemes where the MLP is defined as the average number of
memory requests during the period when there is at least one
outstanding memory request [7]. The base MLP is obtained
when data dependences are correctly enforced within the
instruction window. As observed, there are huge gaps between
the base and the ideal MLPs, especially for Mcf, Gcc-200,
Parser, Gcc-scilab, Health, and Mst. Thus, significant MLP
improvement can be expected, when the delay of issuing cache
misses can be reduced.

3 Overlapping Cache Misses with P-loads
In this section, we describe the P-load scheme using an

example function Refresh_potential from Mcf (Fig. 2).
Refresh_potential is invoked frequently to refresh a huge tree
structure that exceeds 4MB. The tree is initialized with a
regular stride pattern among adjacent nodes on the traversal
path. However, the tree structure is slightly modified between
two adjacent visits. After a period of time, the address pattern
on the traversal path becomes irregular and is difficult to
predict accurately.

The function traverses a structure with three travesal links:
child, pred, and sibling (highlighted in italics), and accesses
basic records with a data link, basic_arc. In the first inner while
loop, the execution traverses down the path through the link:
node�child. With accurate branch predictions, several
iterations of the while loop can be initiated in a wide instruction
window. The recurrent instruction, node = node�child that
advances the pointer to the next node, becomes a potential
bottleneck since accesses of the records in the next node must
wait until the pointer (base address) of the node is available. As
shown in Fig. 3 (a), four consecutive node = node�child must
be executed sequentially. In the case of a cache miss, each of
them encounters delays in sending the request, accessing the

DRAM array, and receiving the data. These non-overlapped
long latency memory accesses can congest the instruction issue
window and stall the processor.

Fig. 3. Pointer Chasing: (a) Sequential accesses; (b) Pipeline

using P-loads

Long refresh_potential (network_t *net)
{

 tmp = node = root->child;
 while (node != root) {
 while (node) {
 if (node->orientation == UP)
 node->potential = node->basic_arc->cost
 + node->pred->potential;
 else {
 node->potential = node->pred->potential
 – node->basic_arc->cost;
 checksum++; }
 tmp = node;
 node = node->child;
 }
 node = tmp;
 while (node->pred) {
 tmp = node->sibling;
 if (tmp) {
 node = tmp;
 break; }
 else node = node->pred;
 }
 }
 return checksum;

}

Fig. 2. Example tree-traversal function from Mcf

0

1

2

3

4

5

6

7

8

Mcf Tw olf Vpr Gcc-200 Parser Gcc-scilab Health Mst Em3d

M
LP

Base

Ideal MLP

Fig. 1. Gaps between base and ideal MLP exploitations

On the other hand, the proposed P-load can effectively

overlap the interconnect delay in sending/receiving data as
shown in Fig. 3 (b). In the following subsections, detailed
descriptions of identifying and issuing the P-loads are given
first, and then the design of the memory controller. Several
issues and enhancement related to the P-loads will also be
discussed.

3.1 Issuing P-Loads
We will describe P-loads issuing and execution within the

instruction window and the memory request window (Fig. 4) by
walking through the first inner while loop of refresh-potential
from Mcf (Fig. 2). Assume the first load, lw $v0,28($a0), is a
miss and is issued normally. The second and third loads
encounter a partial hit to the same line as the first load, thus no
memory request is issued. After the fourth load, lw
$v0,16($v0), is dispatched, a search through the current
instruction window finds a dependence on the second load, lw
$v0,32($a0). Normally, the fourth load must stall. In the
proposed method, however, a special P-load will be inserted
into a small P-load issue window. When the hit/miss of the
parent load is known, an associative search for dependent loads
in the P-load issue window is performed. All dependent P-loads
are either ready to be issued (if the parent load is a miss), or
canceled (if the parent is a hit). The P-load consists of the
address of the parent load, the displacement, and a unique
instruction ID to instruct the memory controller for calculating
the address and fetching the correct block. Details of the
memory controller will be given in Section 3.2. The fifth load is

similar to the fourth. The sixth load, lw $a0,12($a0), advances
the pointer and is also a partial hit to the first load.

The instruction window moves to the second iteration with a
correct branch prediction. The first three loads in the second
iteration all depend on lw $a0,12($a0) in the previous iteration.
Three P-loads are issued accordingly using the address of the
parent load. The fourth and fifth loads, however, depend on
early loads that are themselves also P-loads without addresses.
In this case, special P-loads with an invalid address are issued.
The parent load IDs (p-id), 114 and 115 for the fourth and fifth
loads respectively, are encoded in the address fields to instruct
the memory controller for obtaining correct base addresses.
This process continues across the entire instruction window to
issue a sequence of P-loads seamlessly.

The P-load does not occupy a separate location in the
recorder buffer, nor does it keep a record in the MSHR. Similar
to other memory-side prefetchers [22], the returned data block
must come with the address. The processor searches and
satisfies any existing memory requests located in the MSHR
upon receiving a P-load block from memory. The block is then
put into cache if it is not already there. Searching the MSHR is
needed since the P-load cannot stop other requests that target
the same block. The regular load, from which a P-load was
initiated, will be issued normally when the base register is
ready from its parent load.

3.2 Memory Controller Design
Fig. 5 illustrates the basic design of the memory controller.

DRAM accesses are processed and issued in the memory

ID Instr. Request101105104103102 lw $v0,28($a0)bne $v0,$a3,L1lw $v0,32($a0)lw $v0,16($v0)lw $v1,8($a0)lw $v1,44($v1)addu $v0,$v0,$v1J L2sw $v0,44($a0)addu $v0,$0,$a0lw $a0,12($a0)bne $a0,$0,L0
Load [28($a0)]TypeP-load [addr(103)]
P-load [p-id(114)]

ID Disp(partial hit)(partial hit) 105 16111110109108107106
116115114113112117118

P-load [addr(104)] 106 44(partial hit)lw $v0,28($a0)lw $v0,32($a0)lw $v1,8($a0)lw $v0,16($v0)lw $v1,44($v1) lw $a0,12($a0) P-load [addr(111)]P-load [addr(111)]P-load [addr(111)]P-load [p-id(115)]P-load [addr(111)] 117116115114113118 124416 83228
[28($a0)]IDNew106105 Address DispNew 4416118117116115114113 115114 4416 83228[12($a0)]*

Instruction Window Memory Request Window
* Assume New removed, 118 uses address [12($a0)] to fetch DRAM or P-load Buffer

LinkNewNewNew Offset
32($a0)8($a0)12($a0)12($a0)32($a0)8($a0)12($a0)New

Note, thick lines divide iterations

Fig. 4. Example of issuing P-loads seamlessly without load address

request window similar to the out-of-order execution in
processor’s instruction window. The memory address, the
offset for the base address, the displacement value for
computing the target block address, and the dependence link,
are recorded for each request in their arriving order. For a
normal cache miss, the address and a unique ID assigned by the
request sequencer are recorded. Such miss requests will access
the DRAM array without delay as soon as the target DRAM
channel is open. The regular miss may be merged with an early
active P-load that targets the same block to achieve reduced
penalties.

Two different procedures are applied when a P-load arrives.
First, when the P-load comes with a valid address, the block
address is used to search for any existing memory requests.
Upon a match, a dependence link is established; the offset
within the block is used to access the correct word from the
parent’s data block without the need to access the DRAM. In
the case of no match, the address that comes with the P-load is
used to access the DRAM as illustrated by request 118
assuming that the first request has been removed from the
memory window. Second, when the P-load comes without a
valid address, the dependence link encoded in the address field
is extracted and saved in the corresponding entry as shown by
requests 116 and 117 (Fig. 4). In this case, the correct base
addresses can be obtained from 116’s and 117’s parent
requests, 114 and 115, respectively. The P-load is dropped if
the parent P-load is no longer in the request window.

Once a memory block is fetched, all dependent P-loads will
be woken up. For example, the availability of the New block
will trigger P-loads 105, 106, 113, 114, and 115 as shown in
Fig. 4. The target word in the block can be retrieved and
forwarded to the dependent loads. The memory address of the
dependent P-load is then calculated by adding the target word
(base address) with the displacement value. The P-load block is
fetched if the block has not been in the request window. The
fetched P-load block in turn triggers its dependent P-loads. A
memory request will be removed from the window after the
data block is sent.

3.3 Issues and Enhancement
There are many essential issues that need to be resolved for

implementing the P-load efficiently.
Maintaining Base Register Identity: The base register of a

qualified P-load may experience renaming or constant
increment/decrement after the parent load. These indirect
dependences can be easily identified and established by proper
adjustment to the displacement value of the P-load.

Address Translation at Memory Controller: The memory
controller must perform virtual to physical address translations
for the P-load in order to access the physical memory. A
shadowed TLB can be maintained in the memory controller for
this purpose (Fig. 5). The processor issues a TLB update to the
memory controller whenever a TLB miss occurs and the new
address translation is available. The TLB consistency can be
handled similarly to that in a multiprocessor environment. A
P-load is simply dropped upon a TLB miss.

Reducing Excessive Memory Requests: Since P-load is
issued without the memory address, it may generate
unnecessary memory traffic if the target block is already in
cache, or when multiple requests address to the same data
block. Three approaches are considered in this paper. First,
when a regular miss request arrives, all outstanding P-loads are
searched. In the case of a match, the P-load is changed to a
regular miss for saving variable delays. Second, a small P-load
buffer (Fig. 5) buffers the data blocks for recent P-loads. A fast
access to the buffer occurs when the requested block is located
in the buffer. Third, a topologically equivalent cache directory
of the lowest cache level is maintained to predict cache hit/miss
for filtering the returned blocks. By capturing cache misses,
P-loads, and dirty-block writebacks, the memory-side cache
directory can predict cache hits accurately.

Inconsistent Data Blocks between Caches and Memory:
Similar to other memory-side prefetching techniques, P-loads
fetch the blocks without knowing whether the blocks are
already located in cache. It is possible to fetch a stale copy if
the block is located in caches in the modified state. In general,
the staled copy is likely to be dropped either by a cache-hit
prediction or by searching through the directory before
updating the cache. However, in a rather rare case when a
modified block is writeback to the memory, this modified block
must be detected against outstanding P-loads to avoid fetching
the stale data.

4 Evaluation Methodology
We modified the SimpleScalar simulator to model an 8-wide

superscalar, out-of-order processor with Alpha 21264-like
pipeline stages [14]. Important simulation parameters are
summarized in Table 1.

Nine workloads, Mcf, Twolf, Vpr, Gcc-200, Parser, and
Gcc-scilab from SPEC2000 integer applications, and Health,
Mst, and Em3d from Olden applications are selected because of
high L2 miss rates as ordered according to their appearances.
Pre-compiled little-endian Alpha ISA binaries are downloaded

Fig. 5. The basic design of the memory controller

from [21]. We follow the studies done in [20] to skip certain
instructions, warm up caches and other system components
with 100 million instructions, and then collect statistics from
the next 500 million instructions.

A processor-side stride prefetcher is included in all
simulated models [10]. To demonstrate the performance
advantage of the P-load, the historyless content-aware data
prefetcher [9] is also simulated. We search exhaustively to
determine the width (number of adjacent blocks) and the depth
(level of prefetching) of the prefetcher for best performance
improvement. Two configurations are selected. In the limited
option (Content-limit; width=1, depth=1), a single block is
prefetched for each identified pointer from searching a missed
data block, i.e. both width and depth are equal to 1. In the
best-performance option (Content-best; width=3, depth=4),
three adjacent blocks starting from the target block of each
identified pointer are fetched. The prefetched block initiates
content-aware prefetching up to the fourth level. Other
prefetchers are excluded due to the need of huge history
information and/or software prefetching help.

5 Performance Results

5.1 Speedup Comparison
Fig. 6 summarizes the IPCs and the average memory access

times for the base model, the content-aware prefetching
(Content-limit and Content-best) and the P-load schemes

without (Pload-no) and with (Pload-16) a 16-entry P-load
buffer. Generally, the P-load shows better performance.
Compared with the base model, the Pload-16 shows speedups
of 28%, 5%, 2%, 14%, 6%, 17%, 50%, 13% and 14% for the
respective workloads. In comparison with the Content-best, the
Pload-16 performs better by 11%, 4%, 2%, 2%, -8%, 11%,
25%, 16%, and 12%. The P-load is most effective when the
workload traverses linked data structures with tight load-load
dependences such as Mcf, Gcc-200, Gcc-scilab, Health, Mst,
and Em3d. The content-aware scheme, on the other hand, can
prefetch more load-load dependent blocks beyond the
instruction window. For example, the traversal lists in Parser
are very short, and thus provide limited room for issuing
P-loads. For this workload, the Content-best shows better
improvement. Lastly, the results show that a 16-entry P-load
buffer provides about 1-7% performance improvement with an
average about 3%.

To further understand the P-load effect, we compare the
normalized average memory access times of various schemes
in Fig. 6 (b). The improvement of the average memory access
time matches the IPC improvement very well. In general, the
P-load reduces the memory access delays significantly. We
observe 10-30% reductions of memory access delay for Mcf,
Gcc-200, Gcc-scilab, Health, Mst, and Em3d.

0

0.5

1

1.5

2

2.5

3

Mcf Tw olf Vpr Gcc-
200

Parser Gcc-
scilab

Health Mst Em3d

IP
C

Base
Content-limit
Content-best
Pload-no
Pload-16

(a)

0

0.2

0.4

0.6

0.8

1

1.2

Mcf Tw olf Vpr Gcc-
200

Parser Gcc-
scilab

Health Mst Em3d

N
o
rm

al
iz

ed
 A

ve
. M

em
o
ry

 A
cc

es
s

T
im

e

Content-limit Content-best Pload-no Pload-16

(b)

Fig. 6. Performance comparisons: (a) IPCs; (b) Average
memory access time

Table 1. Simulation parameters
Processor

Fetch/Decode/Issue/Commit Width: 8
Instruction Fetch Queue: 8
Branch Predictor: 64K-entry G-share, 4K-entry BTB
Mis-Prediction Penalty: 10 cycles

RUU/LSQ size: 512/512
Inst./P-load Issue Window: 32/16
Processor TLB: 2K-entry, 8-way
Integer ALU: 6 ALU (1 cycle); 2 Mult/Div: Mult (3

cycles), Div (20 cycles)
FP ALU: 4 ALU (2 cycles); 2 Mult/Div/Sqrt: Mult (4

cycles), Div (12 cycles), Sqrt (24 cycles)
Memory System

L1 Inst./Data Cache: 64KB, 4-way, 64B Line, 2 cycles
L1 Data Cache Port: 4 read/write port
L2 Cache: 1MB, 8-way, 64B Line, 15 cycles
L1/L2 MSHRs: 16/16
Req./DRAM/Data Latency: 80/160/80
Memory Channel: 4 with line-based interleaved
Memory Request Window: 32
Channel/Return Queue: 8/8
P-load Buffer: 16-entry, fully associative
Memory TLB: 2K-entry, 8-way
Cache-Hit Prediction: 8-way, 16K-entry (same as L2)

5.2 Miss Coverage and Extra Traffic
 In Fig. 7, the miss coverage and total traffic are plotted. The

total traffic is classified into four categories: misses, miss
reductions (i.e. successful P-load or prefetches), extra
prefetches, and wasted prefetches. The sum of the misses and
miss reductions is equal to the baseline misses without
prefetching, which is normalized to 1. The extra prefetch
represents the prefetched blocks that are replaced before any
reference. The wasted prefetches are referring to the
prefetched blocks that are presented in cache already.

Except for Twolf and Vpr, the P-load reduces 20-80% overall
misses. These miss reductions are accomplished with little
extra data traffic because the P-load is issued according to the
instruction stream. Among the workloads, Health has the
highest miss reduction. It simulates health-care systems using a
4-way B-tree structure. Each node in the B-tree consists of a
link-list with patient records. At the memory controller, each
pointer-advance P-load usually wakes up a large number of
dependent P-loads ready to access DRAM. At the processor
side, the return of a parent load normally triggers dependent
loads after their respective blocks are available from early
P-loads. Mcf, on the other hand, has much simpler operations
on each node visit. The return of a parent load may initiate the
dependent loads before the blocks are ready from early
P-loads. Therefore, about 20% of the misses have reduced
penalties due to the early P-loads. Twolf and Vpr show
insignificant miss reductions because of very small amount of
tight load-load dependences.

The content-aware prefetcher generates a large amount of
extra traffic for aggressive data prefetching. For Twolf and Vpr,

such aggressive and incorrect prefetching actually increase the
overall misses due to cache pollution. For Parser, the
Content-best out-performs the Pload-16 that is accomplished
with 5 times memory traffic. In many workloads, the
Contest-best generates high percentages of wasted prefetches.
For example for Parser, the cache prediction at the memory
controller is very accurate with only 0.6% false-negative
prediction (predicted hit, actual miss) and 3.2% false-positive
prediction (predicted miss, actual hit). However, the total
predicted misses are 10%, which makes 30% of the return
P-load blocks wasted.

5.3 Sensitivity Study
To reduce memory latency, a recent trend is to integrate the

memory controller into the processor die with reduced
interconnect delay [2]. However, in a multiple processor-die
system, significant interconnect delay is still encountered in
accessing another memory controller located off-die. In Fig. 8
(a), the IPC speedups of the P-load with different interconnect
delays are plotted. The delay indeed impacts the overall IPC
significantly. Nevertheless, the P-load still demonstrates
performance improvement even with fast interconnect. The
average IPC improvements of the nine workloads are 18%,
16%, 13%, and 8% with 100-, 80-, 60-, and 40-cycle delays
respectively.

The scope of the MLP exploitation with P-load is confined
within the instruction window. In Fig. 8 (b), the IPC speedups
of the P-load with four window sizes: 128, 256, 384, and 512
are plotted. The advantage of larger windows is very obvious
since the bigger the instruction window, the better the MLP can
be exploited using the P-load. It is important to point out that

0

1

2

3

4

5

.
C

on
te

nt
-li

m
it

C
on

te
nt

-b
es

t
P

lo
ad

-n
o

P
lo

ad
-1

6

C
on

te
nt

-li
m

it
C

on
te

nt
-b

es
t

P
lo

ad
-n

o
P

lo
ad

-1
6

C
on

te
nt

-li
m

it
C

on
te

nt
-b

es
t

P
lo

ad
-n

o
P

lo
ad

-1
6

C
on

te
nt

-li
m

it
C

on
te

nt
-b

es
t

P
lo

ad
-n

o
P

lo
ad

-1
6

C
on

te
nt

-li
m

it
C

on
te

nt
-b

es
t

P
lo

ad
-n

o
P

lo
ad

-1
6

C
on

te
nt

-li
m

it
C

on
te

nt
-b

es
t

P
lo

ad
-n

o
P

lo
ad

-1
6

C
on

te
nt

-li
m

it
C

on
te

nt
-b

es
t

P
lo

ad
-n

o
P

lo
ad

-1
6

C
on

te
nt

-li
m

it
C

on
te

nt
-b

es
t

P
lo

ad
-n

o
P

lo
ad

-1
6

C
on

te
nt

-li
m

it
C

on
te

nt
-b

es
t

P
lo

ad
-n

o
P

lo
ad

-1
6

Mcf Twolf Vpr Gcc-200 Parser Gcc-scilab Health Mst Em3d

M
is

s
C

o
ve

ra
g

e
an

d
 T

ra
ff

ic

Wasted Prefetch

Extra Prefetch

Miss Reduction

Miss

5.1

Fig. 7. Miss coverage and extra traffic

issuing P-loads is independent of the issue window size. In our
simulation, the issue window size remains at 32 for all four
instruction windows.

6 Related Work
There have been many software and hardware oriented

prefetching proposals for alleviating performance penalties on
cache misses [13, 6, 16, 12, 27, 25, 4, 22, 9, 8, 26, 28, 11].
Traditional hardware-oriented sequential or stride-based
prefetchers work well for applications with regular memory
access patterns [6, 13]. However, in many modern applications
and runtime environments, dynamic memory allocations and
linked data structure accesses are very common. It is difficult
to accurately prefetch due to their irregular address patterns.
Correlated and Markov prefetchers [5, 12] record patterns of
miss addresses and use the past miss correlations to predict
future cache misses. These approaches require a huge history
table to record the past miss correlations. Besides, these
prefetchers also face challenges in providing accurate and
timely prefetches.

A memory-side correlation-based prefetcher moves the
prefetcher to the memory controller [22]. To handle timely

prefetches, a chain of prefetches based on a pair-wise
correlation history can be pushed from memory. Accuracy and
memory traffic, however, remain difficult issues. To overlap
load-load dependent misses, a cooperative hardware-software
approach called push-pull uses a hardware prefetch engine to
execute software-inserted pointer-based instructions ahead of
the actual computation to supply the needed data [27, 28]. A
similar approach has been presented in [11].

A stateless, content-aware data prefetcher identifies
potential pointers by examining word-based content of a
missed data block and eliminates the need to maintain a huge
miss history [9]. After the prefetching of the target memory
block by a hardware-identified pointer, a match of the block
address with the content of the block can recognize any other
pointers in the block. The newly identified pointer can trigger a
chain of prefetches. However, to overlap long-latency in
sending the request and receiving the pointer data for a chain of
dependent load-loads, the stateless prefetcher needs to be
implemented at the memory side. Both virtual and physical
addresses are required in order to identify pointers in a block.
Furthermore, by prefetching all identified pointers
continuously, the accuracy issue still exists. Using the same
mechanism to identify pointer loads, the pointer-cache
approach [8] builds a correlation history between heap pointers
and the addresses of the heap objects they point to. A prefetch
is issued when a pointer load misses the data cache, but hits the
pointer cache. Additional complications occur when the
pointer values are updated.

The proposed P-load abandons the traditional approach of
predicting prefetches with huge miss histories. It also gives up
the idea of using hardware and/or software to discover special
pointer instructions. With deep instruction windows in future
out-of-order processors, the proposed approach easily
identifies existing load-load dependences in the instruction
stream that may delay the dependent loads. By issuing a P-load
in place of the dependent load, any pointer-chasing, or indirect
addressing that causes serialized memory access, can be
overlapped to effectively exploit memory-level parallelism.
The execution-driven P-load can precisely preload the needed
block since it does not involve any prediction.

7 Conclusion
Processor performance is significantly hampered by limited

MLP exploitation due to the serialization of loads that are
dependent on one another and miss the cache. The proposed
special P-load has demonstrated its ability to effectively
overlap these loads. Instead of relying on miss predictions of
the requested blocks, the execution-driven P-load precisely
instructs the memory controller in fetching the needed data
block non-speculatively. The simulation results demonstrate
high accuracy and significant speedups using the P-load.

8 Acknowledgement
This work is supported in part by an NSF grant EIA-0073473

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

M cf Two lf Vpr Gcc-
200

Parser Gcc-
scilab

Health M st Em3d

IP
C

 S
pe

ed
up

40 cycles 60 cycles

80 cycles 100 cycles

(a)

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

M cf Two lf Vpr Gcc-
200

Parser Gcc-
scilab

Health M st Em3d

IP
C

 S
pe

ed
up

128 entries 256 entries

384 entries 512 entries

(b)

Fig. 8. Sensitivity of P-load with respect to: (a) interconnect
delay; (b) instruction window size

and by research and equipment donations from Intel Corp.
Anonymous referees provide helpful comments.

References

[1] H. Akkary, R. Pajwar, and S. T. Srinivasan, “Checkpoint
Processing and Recovery: Towards Scalable Large Instruction
Window Processors,” Proc. of the 36th Int’l Conf. on
Microarchitecture, Dec. 2003, pp. 423-434.

[2] AMD Opteron Processors, http://www.amd.com.

[3] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version
2.0,” Technical Report #1342, CS Department, University of
Wisconsin-Madison, June 1997.

[4] B. Cahoon, K.S. McKinley, "Data Flow Analysis for Software
Prefetching Linked Data Structures in Java", Proc. of the 10th Int'l
Conf. On Parallel Architectures and Compilation Techniques,
2001, pp. 280-291.

[5] M. Charney and A. Reeves. "Generalized Correlation Based
Hardware Prefetching," Technical Report EE-CEG-95-1, Cornell
University, February 1995.

[6] T. Chen, J. Baer, "Reducing Memory Latency Via Non-Blocking
and Prefetching Caches," Proc. of 5th Int'l Conf. on Architectural
Support for Programming Languages and Operating Systems,
Oct. 1992, pp. 51-61.

[7] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture
optimizations for exploiting memory-level parallelism,” Proc. of
the 31st Int’l Symp. on Computer Architecture, June 2004, pp.
76-87.

[8] J. Collins, S. Sair, B. Calder and D. M. Tullsen, “Pointer Cache
Assisted Prefetching,” in Proc. of the 35th Int'l Symp. on
Microarchitecture, Nov. 2002, pp. 62-73.

[9] R. Cooksey, S. Jourdan, D. Grunwald, “A Stateless,
Content-Directed Data Prefetching Mechanism,” Proc. of the 10th
Int'l Conf. on Architectural Support for Programming Languages
and Operating Systems, Oct. 2002, pp. 279-290.

[10] J. Fu, J.H. Patel, and B.L. Janssens, "Stride directed prefetching in
scalar processors," Proc. of the 25th Annual Int’l Symp. on
Microarchitecture, Dec. 1992, pp. 102-110.

[11] H. J. Hughes and S. V. Adve, “Memory-Side Prefetching for
Linked Data Structures for Processor-in-Memory Systems,”
Journal of Parallel and Distributed Computing, 65 (4), April
2005, pp. 448 – 463.

[12] D. Joseph, and D. Grunwald, "Prefetching Using Markov
Predictors," Proc. of 26th Int'l Symp. on Computer Architecture,
Jun 1997, pp. 252-263.

[13] N. P. Jouppi, "Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache and Prefetch

Buffers," Proc. of 17th Int'l Symp. on Computer Architecture,
May 1990, pp. 364-373.

[14] R. E. Kessler, "The Alpha 21264 microprocessor," IEEE Micro,
19(2), March/April 1999, pp. 24-36.

[15] W.-F. Lin, S. K. Reinhardt, and D. Burger, “Reducing DRAM
Latencies with an Integrated Memory Hierarchy Design,” In Proc.
of the 7th Int’l Symp. on High Performance Computer
Architecture, Jan. 2001. pp. 301–312.

[16] C. Luk, T. C. Mowry, "Compiler-Based Prefetching for Recursive
Data Structures", Proc. of the 7th Int'l Conf. on Architectural
Support for Programming Languages and Operating Systems,
Boston, MA, Oct. 1996, pp. 222-233.

[17] T. C. Mowry, M. S. Lam, A. Gupta, "Design and Evaluation of a
Compiler Algorithm for Prefetching", Proc. of the 5th Int'l Conf.
on Architectural Support for Programming Languages and
Operating Systems, Oct. 1992, pp. 62-73.

[18] Olden Benchmark,
 http://www.cs.princeton.edu/~mcc/olden.html.

[19] A. Roth, A. Moshovos, and G. Sohi, “Dependence based
prefetching for linked data structure,” Proc. of the 8th Int’l conf.
on Architectural Support for Programming Languages and
Operating Systems, Oct. 1998, pp. 115-126.

[20] S. Sair and M. Charney, "Memory behavior of the SPEC2000
benchmark suite," Technical Report, IBM Corp., Oct. 2000.

[21] SimpleScalar website,
http://www.eecs.umich.edu/~chriswea/benchmarks/spec2000.ht
ml.

[22] Y. Solihin, J. Lee, and J. Torrellas, “Using a User-Level Memory
Thread for Correlation Prefetching,” Proc. of the 29th Annual
Int’l Symp. on Computer Architecture, May 2002, pp.171-182.

[23] SPEC 2000 benchmark. http://www.spec.org/osg/cpu2000/.

[24] L. Spracklen and S. Abraham, “Chip Multithreading:
Opportunities and Challenges,” Proc. of the 11th Int'l Symp. on
High Performance Computer Architecture, Feb. 2005, pp.
248-252.

[25] S. Vanderwiel, and D. Lilja, "Data Prefetch Mechanisms," ACM
Computing Surveys, June 2000, pp. 174-199.

[26] Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt and C. C.
Weems, “Guided Region Prefetching: a Cooperative
Hardware/Software Approach,” Proc. of the 30th Int’l Symp. on
Computer Architecture, June 2003, pp. 388-398.

[27] C.-L. Yang and A. R. Lebeck, “Push vs. Pull: Data Movement for
Linked Data Structures,” Proc. of the 14th Int'l Conf. on
Supercomputing, May 2000, pp. 176-186.

[28] C.-L. Yang and A. R. Lebeck, “Tolerating Memory Latency
through Push Prefetching for Pointer-intensive Applications”,
ACM Transactions on Architecture and Code Optimization, vol.
1, No. 4, Dec. 2004, pp 445-475.

