Direct Load: Dependence-Linked Dataflow Resolution
of Load Address and Cache Coordinate

Byung-Kwon Chung?, Jinsuo Zhang?, Jih-Kwon Peir?, Shih-Chang Lai®, Konrad Lai*

1USUNO02-203, Sun Microsystems, byung-kwon.chung@sun.com
2Department, of CISE, University of Florida, {jizhang, peir}@Qcise.ufl.edu
3Department of ECE, Oregon State University, laish@ece.orst.edu
“Microprocessor Research Lab, Intel Corp., konrad.lai@intel.com

Abstract

An increasing cache latency in future processors in-
curs profound performance impacts in spite of advanced
out-of-order execution techniques. In this paper, we de-
scribe an early address resolution mechanism that accu-
rately resolves both regular and irregular load addresses.
The basic idea is to build dynamic dependence links from
the instruction that updates the base register to the con-
sumer load instructions. Once a new base address is
available, it triggers calculations of the new load ad-
dresses for dependent loads. Furthermore, the exact
cache location of the requested data is predicted based on
the newly resolved load address. As a result, this direct
load can access the data cache directly to achieve a zero-
cycle load latency. Performance evaluation using SPEC
integer programs shows that the dynamic dependence
links can be established accurately. Combined with a
stride-based predictor, the proposed early address resolu-
tion achieves about 97% average accuracy with less than
1% misprediction. Based on a modified SimpleScalar
model, the proposed method can potentially improve the
IPC by about 18%.

1 Introduction

Memory load latency presents a performance bot-
tleneck in modern processors [19, 23, 22, 15, 13], even
when the data is present in the first-level cache. As the
increasing in cache size and clock frequency continues
in next-generation processors, it is estimated that first-
level cache accesses may consume two to five cycles [3].
This increasing cache load latency will further disrupt
pipeline execution and will impact performance in spite
of advanced out-of-order execution techniques [3, 4].

One way to circumvent cache latency hazards is to
predict the load address at the onset of pipeline exe-
cution so that a cache access can start speculatively

without waiting for the true address [10, 12, 7, 3]. Cur-
rent address prediction schemes, although shortening
the load-to-use latency, suffer from two major deficien-
cies. First, existing address prediction methods exploit
either regular or irregular but repeated address pat-
terns. It is, however, difficult to predict a significant
portion (over 30% [3]) of load addresses that do not
fall into these two categories. Second, given aggressive
multiple-issue microarchitectures, the time required to
predict the load address and the lengthy cache access
path may still induce stalls to the dependent instruc-
tions, even with a correct predicted address. An alter-
native way is to predict the load value [16]. However,
the lack of close correlation between the instruction ad-
dress and the value of the load makes the prediction
accuracy low.

In this paper, we describe a new cache-latency hid-
ing mechanism based on accurate early resolution of
load addresses and the exact cache location of the re-
quested data. It is observed that the inaccuracy of pre-
dicting a load address often comes from an update of
its base register since the last execution instance of the
load. When the update does not follow regular strides
or some repeated pattern, it is difficult to obtain an ac-
curate prediction. We cope with this problem by build-
ing dynamic dependence links from an instruction that
produces a new base register value to the consumer load
instructions. This newly-updated base address triggers
calculations of consumer load addresses in a dataflow
fashion. Therefore, we call the proposed method a
dependence-linked address solver.

To further speed up cache accesses, the existing
cache-way predictor [17, 6] is used to predict the lo-
cation of the newly-resolved load address. Such a lo-
cation, referred to as a cache coordinate, is defined by
the cache set inder, the way within the set, and the
target byte/word within the line. Given the cache co-
ordinate, cache access can be shortened by fetching the

target byte/word out of the data array directly. As
a result, this direct load method has the potential to
achieve a zero-cycle load latency and allow dependent
instructions to be fetched/issued in the same cycle.

Performance evaluations based on a modified Sim-
pleScalar [5] using SPEC95 and SPEC2000 integer pro-
grams show significant improvements in both address
resolution accuracy and Instruction-Per-Cycle (IPC)
rate for the proposed method. Combined with a stride-
based predictor, the early address resolution can achieve
96.8% average accuracy with merely a 0.76% mispre-
diction rate. This method can potentially improve the
IPC by about 18.1% and 9.2% respectively compared
with the model without early address resolution or with
stride/context hybrid predictors.

The remainder of the paper is organized as fol-
lows. The motivation and related work are described
in the next section. An architectural design of the
proposed dependence-linked address resolution, an in-
tegrated cache coordinate predictor, and a few related
correctness and performance issues are discussed in Sec-
tion 3. In Section 4, an example pipeline microarchitec-
ture with link/stride address resolutions is given. This
is followed by performance evaluations of both the ac-
curacy and the IPC improvement in Section 5. Finally,
Section 6 concludes the paper.

2 Background and Related Work

In order to understand the performance impact of
the first-level cache (L;) access delay, we simulate a
set of SPEC2000 integer benchmarks on SimpleScalar
pipeline models. We vary (L1) access latencies from
1 to 5 cycles with various combinations of second-level
cache (Ly) and memory latencies. We also try different
cache and TLB sizes, reorder buffer (RUU) and load-
store queue (LSQ) depth, etc. In summary, each cycle
reduction of the L; access delay improves the IPC by
about 5-10%. Techniques to hide the cache latency are
the main focus of this paper.

Load address predictions at the onset of pipeline ex-
ecution have been considered to reduce the impact of
increasing cache latencies. Stride-based predictors [10,
7, 12] provide accurate predictions if the operand ad-
dress generated by a static load increments/decrements
with a constant stride. Contezt-based predictors [21, 3]
match recent address history or context with the previ-
ous address histories to capture irregular but repeated
address patterns. A hybrid predictor, which integrates
stride-based and context-based predictors, has been
considered for load value prediction [16, 24] and load
address prediction [3]. The latter study shows that the
hybrid scheme can predict 67% of all loads with a very
low miss prediction rate. The remaining 33% of loads,

however, are still not captured [3].

A dependence-linked prefetching technique has been
considered for handling load-load dependencies in spe-
cial pointer-chasing problems [20, 1]. Similar techniques
are also considered for branch resolutions [11]. Recently,
it is observed that the addresses for certain types of
memory loads, such as stack accesses, have regular in-
crement/decrement patterns [4]. By tracking the reg-
isters used for this type of loads, register updates can
be computed at the decode stage for early resolving of
the dependent load address. There have been several
works to achieve fast cache accesses [14, 2, 8, 18]. Their
impact in hiding long cache delays on deep-pipelined
microarchitecture is rather limited.

Our proposed dependence-linked address resolution
has several advantages over existing load latency hid-
ing schemes. First and foremost, the dependence-linked
address solver is not limited by any load types, address
patterns, or special base register updates. An accu-
rate resolution can be made once the correct depen-
dence link has been built. Second, a base register up-
date can trigger address calculations immediately after
the new value is produced. The established update-load
dependence links initiate load address calculations in a
dataflow fashion. In contrast, in order to capture the
latest base address, the correlated context-based predic-
tor is unable to resolve the address as early. Third, the
accurate prior resolution of load address and cache co-
ordinate can advance a load several cycles further ahead
than other fast cache access techniques.

3 Dependence-Linked Address Solver

In Figure 1, we show how the dependence-linked
method can accurately resolve addresses of a load that
are difficult to predict. The function mrglist taken from
go in SPEC95 and its corresponding MIPS assembler
code are illustrated. At the beginning, mrglist() checks
whether the two merge lists are empty. Line (7) of the
assembler code loads the beginning address of the sec-
ond list using base register $5 which was set by callers
of mrglist(). The load value is required immediately by
the next two branches. Predicting the load address at
line (7) by either a stride-based or context-based scheme
will fail because the linked list list2 is a dynamically al-
located entity. The dependence-linked address solver,
on the other hand, can forward the newly-updated $5
from the caller for calculating the load address early
and accurately.

In order to establish update-load dependence links,
two new data structures are created as shown in Fig-
ure 2. The Register Update Table (RUT) remembers
for each register the instruction address (PC) where the
register is most recently updated. This is done before

int mrglist(int list1, int* list2) {
register int ptrl, ptr2, count, temp, temp2;
count = 0;
if (list] == EOL) return(0);
if ([*list2 = EOL) {

cpylist (listl, list2);
- register $5 is set by caller:
. [addiu_$5, $28, ~31404 |
addiu $29, $29, -16

(D) mrglist:

2) addu $11, $0, $0

3) addiu $2, $0, 13594
(€] bne $4, $2, eol_list2
3) addu $2, $0, $0

(6) j end_mglist

@] eollist2: [lw $9,0($5) \
® bne $9, $2, next

® beq $4, $9, cpylist

next:

end_mglist: addiu $29, $29,16
jr $31

Figure 1: A program segment from Go shows an accu-
rate dependence-linked address resolution.

register renaming. Thus, the size of the RUT is same as
that of the register file. The Update Link Table (ULT)
records dependence links that connect the most recently
executed instructions, which participate in register up-
dates, to load instructions where the updated registers
are used as base/index registers.

The procedure of building dynamic dependence links
is also illustrated in Figure 2. When an instruction that
involves a register update is decoded, the current in-
struction address is recorded in the RUT. For instance,
PC; is entered in the RUT’s location corresponding to
$5 after addiu is decoded. When a load instruction
is decoded, the base register dependence is built and
recorded in the ULT if such a link does not already ex-
ist. The source of the link (PC;) can be fetched from
the RUT using the base register ID ($5). The destina-
tion of the link is the instruction address (PCj) of the
load. For simplicity, we consider a common case of only
a base register used in memory instructions.

Besides the RUT and the ULT, an Address Resolu-
tion Table (ART) is established to remember the newly-
updated base register value for dependent loads. An
early load address resolution based on dependence links
involves several steps. First, correct dependence links
must be built as described previously. Second, when-
ever an instruction is fetched, the ULT is looked up si-
multaneously. The dependence links found in the ULT
will be used to forward the updated value to dependent

loads in the ART. Finally, when the load instruction is
fetched, the base and the offset can be obtained from
the table to form the load address. A load using the
early-resolved address can proceed without waiting for
the true address and is referred to as a Predicted Load
(P-load). The correctness of a P-load will be verified
against its regular load.

Address Resolution Table

tag offset | base
lookup
L
PCj :’—» PG 0 [v[ss
update

; Load Address
upd PC| lw PC
lookup
H}
PCi PCi PCj
PCi: addiu $5,$28,-31404 ; base register

update update
ULT (Update Link Table)

PCj: 1w $9,0($5) ; dependent load

upd PC

Base ($5) of lw

- *__PG

RUT (Register Update Table)

Figure 2: The dependence-linked address resolution.

3.1 Fast Path for Predicted Load

The execution of a P-load involves two phases. First,
based on established dependence links, an early reso-
lution of load address is initiated by the instruction
that updates the base register. Second, when a load
is fetched, the P-load can be issued using the early-
resolved address from the ART to access the cache.
Therefore, a P-load can start only when the load is
actually fetched. This conservative approach can pre-
vent any P-load from issuing by an incorrect depen-
dence links. It is conceivable that these two phases are
overlapping. Under a tight dependence distance, the
dependent load may reach the fetch stage before the
new base address becomes available. The advantage of
a P-load may disappear because both the regular and
its P-load are waiting for the new base address.

A fast path using cache way prediction is considered
to gain additional speed for the P-load [17, 6]. Instead
of looking up the tag array, the cache way for the P-
load can be obtained through a way history table. The
predicted way along with proper index and offset bits
forms the cache coordinate for direct accessing the cache
data array. The correctness of the predicted way is ver-
ified after the way is obtained from the regular load.
Besides faster speed, this fast path avoids tag array ac-
cesses for the P-load. Furthermore, a common P-load

Cache—coordinate Resolution Table (CRT)

Way History Table

Predicted Load (WHT)
tag I/s stride link Queue (PLQ) way
lookup P-load S
L.
PCj PCj L [clstrl last Tw[vIdispl addr[w lw (PCj) [no e

I

I

update !
T T T T | T
o B | o
| | | | |
| I | |
. ! |
\-: RN | [| |
| |
upd PC| Iw PC ! ,

look !

ookup ! Next Way
PCi PCi PCj [— ! (to CRT or PLQ)
I
update Upd ($5) of PCi ;
ULT (Update Link Table) Predicted Next Address
Cache Coordinate (to CRT or PLQ)

upd PC|
Base ($5) of lw PCi:
- *|_PG
RUT (Register Update Table) PCj:

addiu $5,$28,-31404 ; base register update

Iw $9,0(85)

g

; dependent load

Figure 3: The integrated link/stride cache-coordinate resolution method.

recovery mechanism can be established to handle both
mis-predicted addresses and ways.

Figure 3 illustrates an example design with an inte-
grated cache-coordinate resolution method. Solid ar-
rows indicate paths to establish update-load links and
to access the predicted cache coordinate, while dashed
arrows show an early resolution of a load address and
its associated way. The predicted cache coordinate is
saved and accessed from a Cache-coordinate Resolution
Table (CRT) that is expended from the ART. A Way
History Table (WHT) records the past way information
for way predictions. Finally, a Predicted Load Queue
(PLQ) is for handling the early address resolution and
the execution of the P-load. Detailed functions of these
tables will be described in subsequent sections.

3.2 Confidence and Stride Predictor

The accuracy of the dependence-linked address res-
olution depends primarily on correct base addresses.
There are two reasons for an incorrect base address.
First, a correct link may be missing. As a result, stale
information may be obtained from the CRT. Second, a
base register update has not completed when the update
instruction is close to the dependent load. To achieve
high accuracy, a P-load may be delayed until the new
base address becomes available.

A confidence mechanism is instituted to handle these
two cases. Two status bits, v are associated with each

entry in the CRT to provide three prediction states.
The state is valid if a newly predicted cache coordinate
has been saved in the CRT. The state is invalid if no
new base address has produced since the last instance of
the load. Lastly, the state is wait if a new base address
is currently being produced. To improve accuracy, a
P-load is issued only with a walid cache coordinate. In
case of a wait state, the P-load will be delayed until the
new cache coordinate is predicted. No P-load is created
when the state is invalid.

Recall that a stride-based predictor can resolve ac-
curately the next load address for constant incre-
ment/decrement address patterns. Such an effective
stride-based predictor can complement the dependence-
linked address solver for reducing the impact of miss-
ing links and short dependence distances. Three selec-
tion strategies are considered. The link-first strategy
prefers the link-based solver unless the cache coordi-
nate in the CRT is invalid. The stride-first strategy se-
lects the stride-based predictor as long as it reveals high
confidence using simple saturation counters. The third
hybrid selection strategy borrowed from [3] institutes a
separate accuracy counter for selecting the stride or the
link resolution when both are confident and valid. Sim-
ilar to the stride/context predictor [3], both stride and
link-based predictions are performed for each load and
the prediction table is updated accordingly.

As shown in Figure 3, the tag in the CRT is for
matching a load instruction. For achieving fast CRT

look-up, tag may be omitted using a direct-mapped de-
sign. The /s represents a 2-bit up-down counter for the
hybrid selection strategy. This counter is incremented
or decremented when either link or stride resolution is
correct. A fixed value can be assigned for other static
selection mechanisms. The stride predictor maintains
four values, a confidence counter ¢, a stride value str,
the last (predicted) address, and the predicted way w.
The link resolution also has four values, prediction sta-
tus bits v, a displacement disp, the early-resolved ad-
dress addr, and the predicted way w. According to the
confidence mechanism, a proper predictor can be se-
lected based on the values of the I/s, ¢ and v bits. A
truth table with respect to these bit values for selecting
the predictor is given in Table 1.

1/s c v pred || /s c v pred
link | lo inv no strd | lo inv no

link | lo | valid | link strd | lo | valid | link
link | lo wait link strd | lo | wait link
link | hi inv strd || strd | hi inv strd
link | hi | valid | link strd | hi | valid | strd
link | hi | wait | link strd | hi | wait | strd

Table 1: Selection of link/stride cache coordinate reso-
lution and prediction.

3.3 Predicted Load Queue

A Predicted Load Queue (PLQ) is established to han-
dle both early address resolutions and executions of the
P-loads (Figure 3). A P-load can be in three states (.5)
in the PLQ: no-trigger, ready-trigger, and issued. Let’s
first consider a simple case when two execution phases
of a P-load are not overlapping. On a ULT match, a
P-load is inserted into the PLQ in the no-trigger state
waiting for the address resolution and cache coordinate
prediction. The CRT entry for the load is also changed
to wait. A correct data dependence is built by renam-
ing the base register of the load to the RUU location
of the base register update. The corresponding CRT
entry is updated and marked it valid once the predicted
cache coordinate is available. The P-load is then re-
moved from the PLQ. The P-load will enter the PLQ
again in the issued state when the load is fetched and
P-load is initiated for execution. This time the CRT
entry is reset to inwvalid. The function and the content
of the PLQ is similar to that of the LSQ for handling
memory dependence and out-of-order execution. Note
that the stride/context predictor also requires a queue
structure for handling early execution of a load with a
predicted address.

Under a tight dependence distance, the dependent
load may reach the fetch stage before the new base ad-
dress becomes available. A bypassing mechanism is de-
signed to allow the P-load to be renamed and issued
directly from the PLQ. Again, a P-load is first inserted
in the PLQ in the no-trigger state by the base register
update. The CRT entry is set to wait to delay the ex-
ecution of any P-load. When the load is fetched, the
corresponding P-load in the PLQ is upgraded to the
ready-trigger state. Meanwhile, the CRT entry is re-
set to invaelid. When the predicted cache coordinate
is ready, the ready-trigger P-load in the PLQ will be
upgraded to the issued state in the PLQ for an early
execution. It is conceivable that multiple instances of
a dependent P-load are initiated by multiple instances
of the same base update. In this case, each instance
of the P-load will be renamed to a different PLQ entry
to receive the cache coordinate produced by the cor-
responding instance of the update. Note that the pre-
dicted cache coordinate is saved in the CRT and marked
it valid only when the P-load in the PLQ is no-trigger.
Therefore, only the latest cache coordinate is saved in
multiple instance cases.

Assume that the dependence link from addiu to lw
has established in Figure 3. A P-load (lw) is inserted
in the PLQ in the mo-trigger state when the addiu is
fetched. The corresponding entry in the CRT for the
lw is set to wait. When the addiu reaches the writeback
stage before the fetch of the lw, the predicted cache co-
ordinate is saved in the location for the lw in the CRT
and becomes walid. The lw is then removed from the
PLQ. The P-load may re-enter the PLQ in the issued
state when the lw is fetched later. The CRT state be-
comes invalid afterwards. If the lw is fetched before the
writeback of the addiu, the lw in the PLQ is upgraded
to ready-trigger and the lw in the CRT is reset to in-
valid. This allow the P-load lw to be triggered directly
from the PLQ.

Due to dynamic branch behavior, it is possible that
the addiu is executed twice before the lw is encountered.
Depending on the dynamic execution distance between
the two addiu, the first useless early resolution of a lw
can either be overwritten in the CRT or be nullified in
the PLQ by the second and useful address resolution.
On the other hand, it is also possible that the lw is
executed twice before an addiu. In this case, the first lw
will reset the corresponding CRT state to invalid, thus
prevent any P-load for the second lw.

A P-load may fetch an incorrect data even with a
correct cache coordinate if the P-load bypasses an early
store that writes to the same memory location in the
program order. After a P-load is issued for execu-
tion in the PLQ with the predicted cache coordinate,
the P-load can be scheduled to access the cache right

| Cycle [1 | 2 | 3 4 | 5 | 6

| 8 | 9 10 [uu J12 13 |

Normal execution:

lw If1 12 Dp1l Dp2 Sch Agn Cal Ca2 Ca3 Wb Cm

sub If1 12 Dpl Dp2 - - - - Sch Exe Wb Cm
With P-load using predicted cache-coordinate:

lw If1 If2 Dpl Dp2 Sch Agn Cal Ca2 Cm
P-lw || CRT | Sch Cal Ca2 Wb

sub If1 12 Dp1l Dp2 Sch Exe Wb - Cm

Figure 4: Pipeline execution without/with the P-load (P-lw); sub follows and depends on lw

away. However, such a P-load must be cancelled later
if a memory dependence is found with respect to early
stores. One intuitive approach is to detect memory de-
pendences by the regular load. However, the P-load
can run many cycles ahead before the detection of such
a violation. Existing memory dependence prediction
techniques can help to stop issuing the P-load if a mem-
ory dependence violation is predicted [9]. We consider
an alternative solution to handle memory dependences.
The P-load always obeys memory dependences with re-
spect to any early stores in the LSQ. In other words, the
P-load will not be issued until the memory dependence
is resolved. Whenever a store address is generated, any
P-load in the PLQ that targets the same memory lo-
cation is canceled if the corresponding regular load has
not entered the LSQ. In other words, any P-load that
could potentially run ahead of the store on which the
load depends will be canceled.

3.4 Cache Way and Miss Predictor

Way predictions are carried out through the Way
History Table (WHT). Certain low order bits of cache
line addresses are used to index into the WHT. The
WHT is updated on a cache miss for both the replaced
and the requested lines. The replaced line is marked
as a miss except when another line in the same set is
indexing to the same WHT entry. The new way of the
requested line is updated in the WHT. For fast way pre-
diction, a simple direct-mapped design without address
tags is considered. In a direct-mapped design, multi-
ple cache lines with the same low-order address (index)
bits share the same entry. In general, large WHTSs that
minimize conflicts can provide high prediction accuracy.
Marked replacement in large WHTs may provide a good
coverage of cache misses.

A prefetch using the predicted load address can be
initiated when a cache miss is predicted. Highly accu-
rate way predictions also suggest to verify the way first
before accessing the data array for the regular load. The
data array is accessed twice by the regular and its P-

load only when the prediction is incorrect.

4 Integrated Microarchitecture

We consider an example design with 8-cycle integer
pipeline that is extended from the basic SimpleScalar
pipeline [5]. We assume instruction and data cache ac-
cesses take two Ifl, If2 and three Cal, Ca2, Ca3 cycles
respectively to reflect the increasing cache delay. In
addition, a separate address generation cycle Agn is re-
quired. We further assume instruction decode, rename
and dispatch take two cycles Dp1, Dp2 plus one cycle
Sch to schedule instructions to the execution unit or the
data cache. These additional cycles reflect complexity
in designing the front-end pipeline [19, 15, 13]. The
rest of the stages including execution FEze, writeback
Wb and commit Cm remain unchanged. The integer
pipeline is extended to eight cycles, while loads take
eleven cycles. Figure 4 illustrates pipeline executions of
two adjacent instructions, a load lw followed by a sub-
traction sub. Both instructions start at cycle 1. The
sub consumes the data loaded by the lw. Due to this
data dependence, the sub is delayed from issuing for five
cycles until the writeback (cycle 10) of the lw.

4.1 Execution of P-Load

The P-load based on early address resolution can
save a few cycles as shown in the lower half of Fig-
ure 4. At the first cycle, the predicted cache coordinate
is fetched from the CRT. The P-load, denoted by P-lw,
is inserted into the PLQ in the next cycle and is sched-
uled to access the data array directly. Since the entire
tag matching path can be skipped we assume a data ar-
ray access takes two cycles. The P-lw is completed and
removed from the PLQ after storing the result and other
related information, such as the predicted address and
way, into the LSQ entry reserved for the regular load at
the fifth cycle. In case that the normal load is delayed
at the dispatch stage, the result is saved in the PLQ

[Cycde [1 J2 |3 4 |5 [6 |7 [8 9 J10 [11 [12 [13 [14 [15 [16 |17
6-cycle dependence distance:
add | Ifl 1f2 Dpl | Dp2| Sch | Exe | Wb | Cm
lw Ifi |[If2 | Dpl| Dp2| Sch | Agn| Cal | Ca2 | Cm | (Wb)| (Cm)
P-lw CRT| Sch | Cal | Ca2 | Wb
0-cycle dependence distance:
add | Ifl If2 | Dpl | Dp2 | Sch | Exe | Wb | Cm
lw Ifi | If2 | Dpl| Dp2| - - Sch | Agn | Cal | Ca2 | Ca3 | Cm | (Cm)
P-lw | CRT| - - - - - PLQ| Sch | Cal | Ca2 | Wb

Figure 5: Execution examples with 6-cycle and 0-cycle dependence distance from add to lw

temporarily. Early updates of the reorder buffer may
further wake up dependent instructions speculatively.
Therefore, the sub can be issued without any stall.

The P-lw can be canceled for two reasons. First,
a predicted load address/cache coordinate is incorrect.
Second, a memory dependence violation occurs. For a
regular load, the load address that is available after the
Agn cycle is used to verify against the early-resolved
address of the P-lw. There is a slim chance that the
incorrect cache coordinate is due to the way prediction.
This can be detected after the second cache access cycle
of the regular load. With regard to memory dependence
violations, any early P-lw in the PLQ that targets the
same memory location of the current store is canceled
if the corresponding regular load enters the LSQ later
than the store. When a misprediction or a memory
dependence violation is detected, the P-lw along with its
early-triggered dependent instructions must be canceled
and restarted using the correct load value.

The lw is allowed to commit early according to the
program order after correctness of the P-lw is verified.
Any memory dependence violation or an incorrect P-lw
address can be captured at the address generation of the
regular load (cycle 6). However, the lw will not be com-
mitted until the predicted way is also verified (cycle 9).
After the verification, the regular load can be merged
with the P-lw by simply changing the state of the lw
to normal. Similarly, the state of any early-triggered
dependent instructions by the P-lw is also changed to
normal to continue fast execution paths.

4.2 Variable Update-Load Distances

We show examples with 0 and 6 cycle distances in
Figure 5, in which we assume the lw uses the value pro-
duced by the add as the base address. When the de-
pendence distance is 6 cycles or longer, the P-lw starts
in parallel with the regular load lw at cycle 7. The new
predicted cache coordinate available at cycle 7 is for-
warded in time for the P-lw in parallel with the CRT

update. The P-lw updates the LSQ at cycle 11 instead
of cycle 16 as would be done by the regular load. Con-
sequentially, instructions that depending on the load
value can potentially start 5 cycles earlier. After the
correctness of the P-lw is verified, the lw can be com-
mitted at cycle 15. Without the P-lw, the writeback
and commit stages would be done at cycle 16 and 17.

When the add and the lw are fetched at the same
cycle, i. e. a O-cycle distance, the P-lw is forced to
wait until the new base address has computed (cycle 6
in the example). The regular load is able to schedule
one cycle earlier after writeback of the add. However,
the P-lw can still win by one cycle using the predicted
cache coordinate. Thus, for dependence distances rang-
ing from 0 to 6 cycles, the P-load can be advanced from
1 to 5 cycles ahead of the regular load in this baseline
microarchitecture. Advanced techniques such as regis-
ter tracking [4], or triggering critical register updates
early can further advance the P-load with short depen-
dence distances. More discussions in this direction can
be considered as future work.

5 Performance Evaluation

Performance evaluations of load address resolution
methods are carried out on SimpleScalar-based simula-
tors. We will first compare the accuracy of these meth-
ods using functional simulation models. In functional
simulations, verifications of load address and predicted
way as well as updates of various tables occur when a
load is fetched and executed. This functional accuracy
is independent of pipeline implementations and can be
used to display the potential of the proposed methods.
In addition, for comparison purposes, functional accu-
racy is more along the lines of early published results.
Recall that a modified SimpleScalar model with an 8-
cycle, out-of-order integer pipeline and 11-cycle mem-
ory loads has been discussed. The IPC improvement on
the modified model will also be given. Some simulation

‘ O stride-corr E context-corr

Olink-corr HEstride-incor Econtext-incor Elink—incorl

100

'E’ aE e

©
o
I

]

®
o
|

~
o
!

D
o
!

[6)]
o
!

Prediction Accuracy / Inaccuracy (%)
() »
o o
: i

N
o
|
I

_k
)
i
\

T

Bzip Gap Gce Gzip Mcf Parse

Twolf

Vortex Vpr Go Li M88k Perl Average

Figure 6: Accuracy of five address resolution methods: hybrid stride/context, link-only, link-stride, stride-link,
dynamic link/stride, illustrated from left to right for each workload; on the average column, two more methods:
stride-only, context-only are added on the left; the accuracy of each method broken into six categories (from bottom
to top): stride-correct, contexrt-correct, link-correct, stride-incorrect, context-incorrect, and link-incorrect; the space

above each bar represents no-prediction.

Parameters Size
Issue width 8
Functional units (+/*) 8/2
Memory port 4

Bimodal branch predictor 8K entry, BTB

RUU/LSQ/PLQ size 128/64/32
L, (I/D)/L» caches 32KB, 4-way/1MB, 4-way
Ly (I/D)/Ly/memory delay 2/3/10/100
Stride/Context predictor: total: 78KB

Load buffer (LB)
Link table (LT)

4K entry (51KB)
4K entry (27KB)

Link/Stride predictor: total: 88KB

CRT 4K entry (61KB)
ULT/RUT 4K entry (24KB)
WHT 8K entry (3KB)

Table 2: Simulation parameters.

parameters are summarized in Table 2.

Several integer programs, Bzip, Gap, Gee, Gzip, Mcf,
Parse, Twolf, Vortex, Vprfrom SPEC2000, and Go, Li,
M88k, Perl from SPEC95, are used. The SPEC2000
binaries are generated by ssbig-na-sstrix-gec/g++, ver-
sion 2.7.2.3 compiler with option: -funroll-loops -O2.
For each workload, we skip the first 200 million instruc-

tions, then collect simulation statistics from the next
200 million instructions.

5.1 Accuracy of Address Resolution

We first compare the accuracy of seven early ad-
dress resolution methods. The first three: stride-only,
context-only and hybrid stride/context [3] are existing
methods. The next four are all link-based: link-only,
link-stride, stride-link, and dynamic link/stride, where
the last three are link and stride combined with the re-
spective link-first, stride-first, and hybrid selection. The
same prediction table size is used for all the methods.
Both the CRT in the link-based scheme and the load
buffer in the context-based scheme have 4K entries with
2-way set-associativity. Both the ULT and the link ta-
ble have 4K entries with 16-way set-associativity. As
shown in Table 2, the link/stride method requires a
slightly bigger CRT for saving the predicted address and
way comparing with that in the stride/context method.
Other stride-only, context-only, and link-only methods
use the same table size with less hardware requirement.
Note that for better accuracy, context-based schemes
predict base addresses [3].

The results in
Figure 6 show superior address resolution accuracy us-

Address Resolution Accuracy:

ing the dependence-linked address solver. Comparing
with the hybrid stride/context scheme, the link-only ad-
dress solver already shows a slight edge with 71.4% av-
erage accuracy against 69.4% in hybrid, and 1.1% inac-
curacy against 3.3% in hybrid. Combined with the link
and the stride predictors, the accuracy improves dra-
matically for all three selection mechanisms. The dy-
namic selection has the best results. It achieves 96.8%
average accuracy with merely 0.76% misprediction rate.
Vortex is the only exception among the workloads. It
has 90.8% correct resolution with 4.3% incorrect rate.
Vortex shows the highest number of dependent loads for
each base register update, which causes conflict misses
in the ULT.

Such high accuracies reveal three important facts.
First, dynamic update-load dependence links can be
built quickly and accurately, and the working set of the
dynamic dependence history can be held in moderate-
size tables. Second, the stride predictor complements
the dependence-linked address solver almost perfectly.
About 37.0% out of 96.8% of accurate resolutions are
contributed by the stride predictor. Most of them be-
long to no-prediction cases in the link-only scheme due
to a lack of new base address. Third, the dynamic se-
lection of link and stride mechanisms is more accurate
than the static selection mechanisms.

Ostride-corr dlink-corr-d11,up Elink-corr-d8,9,10 Elink-corr-d5,6,7
Elink-corr-d2,3,4 Olink-corr-d1 B s/l-incor

=]
5}

SRS vy

@
3

SSSSSSSNISssNsNsNssss v I

N
3

Prediction Accuracy / Inaccuracy (%)

)

o

Bzip Gee Mcf Twolf Vpr Li Perl
Gap Gzip Parse Vortex Go M88k Average

Figure 7: Dependence distance distribution.

Dependence Distance: The performance impact
of the link-based address solver is constrained by the
distance between a register update and its dependent
loads. In Figure 7, the distance distribution for accu-
rate link-based address resolutions is plotted. Although
about 30% of accurate link-based resolutions have the
update immediately preceding the load with distance
of 1, there are also equal amount of distance 11 and
longer for those accurate link-based resolutions. Since
average IPCs for the selected workloads is quite low
ranging from 1 to 2, dependence distance of 8 or longer

may take the full advantage of the direct-load method.
Together with a stride predictor, a total of 60% of pre-
dictions can advance the loads by 5 cycles. This update-
load distance distribution varies among the workloads.
Bzip, Gap, Gzip, and Go have relatively short update-
load distances, while Gee, Vorter, Li, and Perl have
much longer distances.

Table Size and Topology: Prediction table sizes
and topology likely influence the prediction accuracy.
In Figure 8, average results of a sensitivity study for
the 13 workloads are plotted. We varies both CRT and
ULT sizes from .5K to 8K entries. We also simulate
four set-associativities, 1, 4, 8, and 16 for the ULT with
a fixed set-associativity of 2 for the CRT. As expected,
larger tables with higher set-associativities provide bet-
ter resolution accuracy. The results also indicate high
set-associativity of the ULT is essential since each regis-
ter update may trigger multiple loads and thus requires
multiple links in the same set. From these results, we
pick 4K entries for CRT/ULT with 16-way ULT for de-
tailed pipeline simulations.

‘Dstride-corr Olink-corr Estride-incor @ link-incor

8 16 - = =]

90 * = | = -
g = 1
> 80 = = = ==
8 =
3701 ™
8
£ 60
g 50 -
H | | -
3 40 A — || - i
g S | L | L]
§ 304 I
k3
3 20
o

10 4

0

.5K-Entry 1K 2K 4K 8K
CRT / ULT Size

Figure 8: Sensitivity of address resolution accuracy with
respect to CRT/ULT size and ULT set-associativity.

Multiple Dependent Loads and Updates: We
measure two parameters with respect to the number of
dependent loads for each dependence-linked base reg-
ister update, and the number of base register updates
received for each issued P-load. The results are shown
in respective left and right bars with annotated averages
in Figure 9. A majority of linked base register updates
(66%) have a single dependent load, while a majority
of P-load (87%) receives only a single base update as
indicated by I-load/upd,upd/load. However, the aver-
age dependent loads are ranging from 2.12 to 2.40 for
various CRT /ULT sizes indicating that multiple links in
the ULT for each base update and sufficient ports to ac-
cess the CRT are necessary. These multiple dependent

loads, such as stack accesses, are normal in applica-
tions. The average updates received per issued P-load,
on the other hand, are ranging from 1.32 to 1.38. This
indicates over 30% of early resolutions are useless due
to multiple execution paths. However, since a P-load
can be issued only when the load is fetched, these extra
updates will not produce any P-load.

| Ot-oadupdupdioad @2- @3- M4 E5more

n
S}

212/1.32 2.29/1.36

2.37/1.37

221/1.34 2.40/1.38

o
S

=3
S

IS
o
load / update

load/upd,upd/load distribution (%)
3
update / load

n
o

63.12% total link-based resolutions, however, the incor-
rect rate is measured at .72% out of the total 1.29%. Al-
though the absolute value is small, it represents 56% of
the total inaccuracy. We observed similar results in the
link-only scheme, where the percentage of 0-update is
much higher. The results support our confidence mech-
anism to trade high-probability of misprediction with
no-prediction when a 0-update is encountered.

total | O-upd | l-upd | 2-upd | 3-upd | 4&up

corr 61.83 0.98 51.83 4.84 1.54 2.64
incor 1.29 0.72 0.38 0.04 0.05 0.10

.5K-Entry 1K 2K
CRT / ULT Size

Figure 9: Average number of dependent loads per up-
date, and average number of updates per load.

Fast CRT Design: The time required to access the
CRT for a predicted cache coordinate is critical in the
proposed method. We simulate a direct-mapped CRT
with/without tag comparison when accessing the cache
coordinate. As shown in Table 3, the results of direct-
mapped CRTs are comparable to that of a 2-way CRT.
Without tag comparison, inaccuracy increases slightly.
Overall, the early resolution accuracy is rather insensi-
tive with respect to the set-associativity of the CRT.

CRT correct | str-cor | link-cor | str-no | link-no

lw-notag | 95.26 36.16 59.10 0.41 0.78
1lw-tag 95.26 36.16 59.10 0.25 0.45
2w 96.77 36.92 59.85 0.26 0.50

Table 3: Accuracy of link-based resolution using direct-
mapped CRT with/without tag comparison.

Confidence Mechanism: Next, we evaluate the
early resolution accuracy with respect to the number of
base register updates received for each P-load. Table 4
shows the average result of 13 workloads. Note that in
order to know the accuracy of 0-update, we ignore the
valid bit in this set of simulations. As a result, there are
tiny difference in comparison with other results because
of the change in updating the selection counter. It is
observed that 0-update is only account for 1.70% out of

incor% 2.09 42.43 0.72 0.72 3.10 3.67

Table 4: Accuracy with respect to number of updates.

Way and Miss Prediction Accuracy: Finally,
the average accuracy of cache way and miss prediction
using the WHT is given in Table 5. We consider the pre-
diction accuracy only when the early-resolved load ad-
dress is correct (96.77%). WHTs that were used in the
simulation can hold the way and miss information for 2
to 16 times of the number of cache lines in the L; data
cache. We also show cache hit/miss ratios when ad-
dresses are correct. All WHTs are direct-mapped with-
out tags. With an 8time WHT, correct way and miss
predictions with respect to the actual cache hits/misses
are reaching 99.9% and 94.8% respectively as shown in
the parentheses. This high miss prediction rate is due
to records the recent evicted lines. The high accuracies
support fast way and miss predictions without requir-
ing early cache tag array accesses. Such high accuracies
also suggest to verify the way prediction first for the
regular load to avoid accessing the data array twice.

miss-corr miss-no

1.80 (72-3 0.11

WHT way-Ccorr way-no
2x 93.90 (99.6) 0.96)
4x 94.14 (99.9) 0.42 2.15 (86.4) 0.06
8x 94.21 (99.9) 0.18 2.36 (94.8) 0.02
16x 94.26 (100.) 0.06 2.44 (98.0) 0.01
cache | 94.28 (hit) 0 2.49 (miss) 0

Table 5: Accuracy of cache way and miss prediction,
measured with correct address prediction (96.77%).

5.2 Integrated Pipeline Performance

We now compare the IPC improvement of the dy-
namic link/stride address resolution and the hybrid
stride/context predictor over the base model without
address resolution. As shown in Figure 10, the aver-

age IPC increases by 18.1% and 9.5% respectively. In
these simulations, we assume there are two read ports
and two write ports for both the CRT and the ULT.
We also assume a perfect scheduler for updating the
CRT with precise recovery upon a mis-prediction. In
detailed pipeline simulation, we have experienced two
major difficulties in improving IPCs.

35
OHybrid S+C
30 Dy ic L+S

IPC Improvement (%)

Figure 10: IPC comparison of base, hybrid and direct-
load methods.

Prediction Accuracy: In the pipeline model, the
prediction table is not updated until the true load ad-
dress is generated. This delay of updating the CRT
may reduce the accuracy of subsequent predictions. For
example, in a tight-loop of using the stride predictor, a
wrong address can be produced based on the old current
address. In addition, address resolutions and updates
of RUT, ULT and CRT could potentially happen on a
mis-predicted path. These incorrect updates can affect
the following address resolutions in the correct execu-
tion path. We did not attempt to make adjustment on
these issues as we observe the inaccuracy of address pre-
diction increases to about 3-4% in pipeline simulation.
Similarly, although the dependence links can be built
at the decode cycle of a load, the next register update
may already be fetched and misses the correct link in
the ULT as the no-prediction rate increases from 2.4%
to nearly 5%.

Memory dependence violation: Memory depen-
dence violations present another major problem. We
found out near 10% of the correctly resolved addresses
are canceled due to memory dependence violations. De-
tailed analysis shows that such short store-load memory
dependences occur fairly often in SimpleScalar assem-
bly codes. For instance, because of dynamic execution
paths, a register may need to be free at the end of a basic
block by storing the content back to memory. However,
the stored data is often required at the beginning of an-
other basic block. When those two blocks are adjacent
at runtime, a tight memory dependence is formed and

a P-load can run ahead of the store. Such a high degree
of cancellation may incur heavy penalty because the P-
load could potentially run far ahead before the store
address is resolved. To alleviate this penalty, a P-load
is held in the PLQ after accessing the data array when
any store has entered the LSQ between the P-load and
the regular load. After memory dependence is resolved
by the regular load, the P-load updates the LSQ with
the data. In this case, the P-load still has a three-cycle
advantage over the regular load.

The above problems exist in other address predic-
tion methods. The average useful address resolution
is dropped to about 82%, which is still significantly
higher than the useful prediction rate (60%) of the
hybrid stride/context predictor in the pipeline execu-
tion mode. There are several directions to improve the
pipeline performance. First, multiple stride predictions
using a single current address may improve accuracy
in a tight-loop situation [3]. Second, proper recovery
mechanisms may be used to correct various table up-
dates from wrong execution paths. Third, an accurate
memory dependence predictor may be added to allow
those P-load without memory dependence violations to
be executed earlier.

6 Conclusion

We have shown a highly-accurate dependence-linked
address resolution method for hiding the increas-
ing cache latency in modern microprocessors. This
dependence-linked address solver can handle those load
addresses that are inherently irregular and difficult to
predict. We demonstrated that dynamic dependence
links can be established accurately between the instruc-
tion where a base address is produced to the load in-
struction. Given correct links, a new base address can
trigger address calculation and cache coordinate resolu-
tion in a dataflow fashion to achieve O-cycle latency for
a significant portion of loads. The proposed method is
especially appealing for building large first-level caches
without compromising fast clock rate.

Performance evaluation based on a functional model
using SPEC integer programs suggested that the
dependence-linked address resolution mechanism can
achieve 96.8% accuracy with as little as 0.76% mispre-
diction rate. Preliminary studies also show that the
proposed method has a potential to improve the exe-
cution time by about 18% on a modified SimpleScalar
model. When an advanced stride/context hybrid pre-
dictor is used, the link-based method can still improve
the overall performance by about 9%.

Acknowledgment:
The authors would like to thank Jean-Loup Baer and

John Shen for their feedback on this paper. Anonymous
referees provide very helpful comments. This work is
supported in part by NSF grants MIP-9624498, ETA-
0073473 and by Intel research donations.

References

[1]

[2]

(3]

[5]

[7]

[9]

[10]

P. Ahuja, J. Emer, A. Klauser, and S. Mukherjee, “Per-
formance Potential of Effective Address Prediction of
Load Instructions,” Prod. of 2001 Workshop on Mem-
ory Performance Issues, July 2001, (12 pages).

T. Austin and G. Sohi, “Zero-cycle loads: microarchi-
tecture support for reducing load latency”, Proc. of
28th annual international symposium on Microarchi-
tecture , Ann Arbor, MI, Dec. 1995, pp. 82-92.

M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim,
L. Rappoport, A. Yoaz, and U. Weiser, “Correlated
Load-Address Predictors,” Proc. of 26th Annual Int’l
Symp. on Computer Architecture, Atlanta, GA, May
1999, pp. 54-63.

M. Bekerman, A. Yoaz, F. Gabbay, S. Jourdan, M.
Kalaev, and R. Ronen, “Early Load Address Resolu-
tion Via Register Tracking,” Proc. of 27th Annual Int’l
Symp. on Computer Architecture, Vancouver, Canada,
June 2000, pp. 306-315.

D. Burger and T. Austin, “The SimpleScalar Tool Set,
Version 2.0”, Technical Report #1342, CS Department,
Univ. of Wisconsin-Madison, June 1997.

B. Calder and D. Grunwald, “Next Cache Line and Set
Prediction,” Proc. of 22nd Int’l Symp. on Computer
Architecture, S. Margherita Ligure, Italy, June 1995,
pp. 287-296.

C. Chen and A. Wu, “Microarchitecture Support for
Improving the Performance of Load Target Predic-
tion,” Proc. of 30th annual international symposium
on Microarchitecture, Triangle Park, NC, Dec. 1997,
pp. 228-234.

B. Cheng, D. Connors, and W. Hwu, “Compiler-
Directed Early Load-Address Generation,” Proc. of
31st annual international symposium on Microarchitec-
ture , Dallas, TX, Dec. 1998, pp. 138-147.

G. Chrysos and J. Emer, “Memory Dependence Pre-
diction using Store Sets”, Proc. of 25th Int’l Symp. on
Computer Architecture, Barcelona, Spain, June 1998,
pp. 142-153.

R. Eickemeyer and S. Vassiliadis, “A Load-Instruction
Unit For Pipelined Processors,” IBM Journal of Re-
search and Development, Vol. 37(4), pp. 547-564, July
1993.

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

21]

(22]

23]

24]

A. Farcy, O. Temam, R. Espasa, and T. Juan,
“Dataflow Analysis of Branch Mispredictions and Its
Application to Early Resolution of Branch Outcomes,”
Proc. of 81st annual international symposium on Mi-
croarchitecture , Dallas, TX, Dec. 1998, pp. 59-68.

J. Gonzalez and A. Gonzalez, “Speculative Execution
via Address Prediction and Data Prefetching,” ACM
1997 Int’l Conf. on Supercomputing, Vienna, Austria,
Aug. 1997, pp. 196-203.

T. Horel and G. Lauterbach, “UltraSPARC-III: De-
signing Third-Generation 64-Bit Performance”, IEEE
Micro, May /June 1999, pp. 73-85.

K. Hua, A, Hunt, L. Liu, J-K. Peir, D. Pruett, and J.
Temple, “Early Resolution of Address Translation in
Cache Design,” Proc. of 1990 Int’l Conf. on Computer
Design, Boston, MA, Sep. 1990, pp. 408-412.

R. Kessler, “The Alpha 21264 Microprocessor,” IEEE
Micro, Vol. 19(2), March/April 1999, pp. 24-36.

M. Lipasti, C. Wilkerson and J. Shen, “Value Locality
and Load Value Prediction”, Proc. of the 7th Int’l Conf.
on Architectural Support for Programming Languages
and Operating Systems, Boston, MA, Oct. 1996, pp.
138-147.

L. Liu, “History Table for Set Prediction for Accessing
a Set-Associate Cache,” U.S. Patent 5,418,922, May
1995.

W. Lynch, G. Lauterbach and J. Chamdani,
“Low Load Latency through Sum-Addressed Memory
(SAM),” Proc. of 25th Annual Int’l Symp. on Com-
puter Architecture, Barcelona, Spain, June 1998, pp.
369-379.

D. Papworth, “Tuning the Pentium Pro Microarchitec-
ture,” IEEE Micro, Vol. 16(2), April 1996, pp. 8-15.

A. Roth, A. Moshovos, and G. Sohi, “Dependence
Based Prefetching for Linked Data Structures,” Proc.
of the 8th Int’l Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, San Jose,
CA, Oct. 1998, pp. 115-126.

Y. Sazeides and J. Smith, “The Predictability of Data
Values,” Proc. of 80th annual international symposium
on Microarchitecture, Triangle Park, NC, 1997, pp.
248-258.

T. Slegel, et al.,, “IBM’s S/390 G5 Microprocessor
Design,” IEEE Micro, Vol. 19(2), March/April 1999,
pp. 12-23.

P. Song, “IBM’s Power3 to Replace P2SC,” Micropro-
cessor Report, Vol. 11(15), Nov. 1997, pp. 1-11.

K. Wang and M. Franklin, “Highly Accurate Data Val-
ues Prediction using Hybrid Predictors,” Proc. of 80th
annual international symposium on Microarchitecture,
Triangle Park, NC, Dec. 1997, pp. 281-290.

