Modeling and Single-Pass Simulation on CMP Cache Capacity and Accessibility
Xudong Shi, Feiqi Su, Jih-Kown Peir, Ye Xia, Zhen Yang
Dept. of Computer and Information Science and Engineering

University of Florida
Gainesville, FL, USA

{xushi, fsu, peir, yx1, zhyang}@cise.ufl.edu

Abstract- The future Chip-Multiprocessors (CMPs) with a large number of cores faces difficult issues in efficient utilizing on-chip storage space. Tradeoffs between data accessibility and effective on-chip capacity have been studied extensively. It requires costly simulations to understand a wide-spectrum of design spaces. In this paper, we first develop an abstract model for understanding the performance impact with respect to the degree of data replication. To overcome the lack of real-time interactions among multiple cores in the abstract model, we propose an efficient single-pass stack simulation method to study the performance of a variety of cache organizations on CMPs. The proposed global stack logically incorporates a shared stack and per-core private stacks to collect shared/private reuse (stack) distances for every memory reference in a single simulation pass. With the collected reuse distances, performance in terms of hits/misses and average memory access times can be calculated for multiple cache organizations. The basic stack simulation results can further derive other CMP cache organizations with various degrees of data replication. We verify both the modeling and the stack results against individual execution-driven simulations that consider realistic cache parameters and delays using a set of commercial multithreaded workloads. We also compare the simulation time saving with the stack simulation. The results show that stack simulation can accurately model the performance of various studied cache organizations with 2-9% error margins using only about 8% of the simulation time. The results also show that the effectiveness of various techniques for optimizing the CMP on-chip storage is closely related to the working sets of the workloads as well as the total cache sizes.
I. Introduction

Balancing CMP cache accessibility due to wiring delay and on-chip storage capacity due to data replication has been studied extensively [2, 17, 9, 23, 30, 8, 3, 25, 14, 13, 16]. A shared cache organization provides the maximum cache capacity that leads to the least off-chip traffic. However, in such a design, data blocks are usually allocated across multiple banks, resulting in an increase in the cache access delay due to a high percentage of remote bank accesses. A private cache organization, on the other hand, reduces the cache access delay by allocating the recently-accessed blocks in the local cache. Multiple copies of a single block may exist in multiple caches to reduce remote accesses. However, multiple copies decrease the effective cache capacity and increases off-chip memory traffic.

As a CMP memory hierarchy typically includes small, private instruction/data L1 caches for fast accesses, the interesting issue is the organization of the on-die L2 cache. Recently, there have been several research works [2, 17, 9, 23, 30, 8, 3] proposing various combined private/shared L2-cache organizations following two general directions. The first is to organize the L2 as a shared cache for maximizing the capacity. To shorten the access time, a portion of the L2 can be set aside for replication [30]. The second is to organize the L2 as private caches for minimizing the access time. To achieve higher effective capacity, data replications among multiple L2s are constrained and different private L2s can steal each other’s capacity by block migration [23, 3, 8]. These studies must examine a wide-spectrum of design spaces. Due to the lack of an efficient methodology, near-sighted conclusions can potentially be drawn as a result of missing comprehensive views from all essential design parameters.
Although analytical models can provide quick performance estimations [1, 12], they usually depend on statistical assumptions, and cannot accurately model systems with complex real-time interactions among multiple processors [7]. For fast simulations, the stack simulation technique proposed in [20] simulates multiple cache sizes in a single pass under the LRU replacement policy. Several extensions and enhancement have been made to improve the speed of the single-pass stack simulation or the coverage to variable set-associativities [20, 4, 26, 12, 15, 24]. However, these stack simulation methods target to only uniprocessor caches where no cache coherence complexity is involved and the memory access delay hardly affects the order of memory requests. Extensions of the stack simulation to multiprocessors are reported in [28, 29]. Those works focus on solving the problem of multiprocessor cache invalidations by stack simulations for general set-associative caches. However, the remote cache hit, an important measure on CMPs, is not included. Moreover, the accuracy of using traces to simulate different multiprocessor cache organizations is not evaluated.
In this paper, we present a general framework for fast projection of CMP cache performance [22]. Four L2 cache organizations, Shared, private, shared with data replication, and private without data replication are studied. We focus on understanding the performance tradeoff between data accessibility and cache capacity loss due to data replication. The outline and contributions of our approach are as follows.
1) Modeling Data Replication: We first develop an analytical model to assess general performance behavior with respect to data replications in CMP caches. The model injects replicas (replicated data blocks) into a generic cache. Based on the block reuse-distance histogram obtained from a real application, a precise equation is derived to evaluate the impact of the replicas. The results demonstrate that whether data replication helps or hurts L2 cache performance is a function of the total L2 size and the working set of the application. Existing CMP cache studies may have overlooked this general replication behavior because of failing to examine the entire design space.
2) Single-Pass Stack Simulation: To overcome the limitations of modeling, we developed a single-pass stack simulation technique to handle shared and private cache organizations with the invalidation-based coherence protocol. The stack algorithm can handle complex interactions among multiple private caches. This single-pass stack technique can provide local/remote hit ratios and the effective cache size for a range of physical cache capacities.
3) Performance Derivation of Data Replication: We demonstrate that we can use the basic multiprocessor stack simulation results to estimate the performance of other interesting CMP cache organizations. For example, given different percentages of the L2 cache reserved for data replication, we can derive the average L2 access time under a shared L2 cache organization. Such a cache organization closely resembles the L2 cache with victim replication [30].
4) Performance Projection and Verification: We verify the projection accuracy from the stack simulation against the detailed execution-driven simulation for each individual cache configuration using three multithreaded workloads. We observe that both the modeling and the single-pass stack simulation produce consistent performance views for CMP caches with different degrees of data replication. We also show that the single-pass stack simulation produces small error margins of 2-9% for all simulated cache organizations.
5) Simulation Time Comparison: The total simulation times for the single-pass stack simulation and the individual execution-driven simulations are compared. For a limited set of the four studied cache organizations, the stack simulation takes about 8% of the execution-driven simulation time.
The paper is organized as follows. Section 2 describes the analytical model. Section 3 introduces the CMP single-pass stack simulation. Section 4 describes the simulation methodology. This is followed by performance evaluations against execution-driven simulations in section 5. The related work and the conclusion are given in Section 6 and Section 7.
II. Modeling Data Replication
In this section, we develop an abstract model independent of private/shared organizations to evaluate the tradeoff between the access time and the miss rate of CMP caches with respect to data replication. The purpose is to provide a uniform understanding on this central issue of caching in CMP that is present in most major cache organizations. This study also highlights the importance of examining a wide enough range
[image: image1.png]Reuse Frequency

Inerease Local Hits

Inerease Cache Misses

Py Feplis

>
S Reuse Distance

Figure 1. Cache performance impact with replica
of system parameters in the performance evaluation of any cache organization, which can be very costly.

In Figure 1, a generic histogram of block reuse distances is plotted, where the reuse distance is measured by the number of distinct blocks between two adjacent accesses to the same block. A distance of zero indicates a request to the same block as the previous request. The histogram is denoted by f(x), which represents the number of block references with reuse distance x. For a cache size S, the total cache hits can be measured by
[image: image2.wmf]dx

x

f

S

ò

0

)

(

, which is equal to the area under the range of the histogram curve from 0 to S. This well-known, stack distance histogram can provide hits/misses of all cache sizes with a fully-associative organization and the LRU replacement policy.

To model the performance impact of data replication, we inject replicas into the cache. Note that regardless the cache organization, replicas help to improve the local hit rate since replicas are created and moved close to the requesting cores. On the other hand, having replicas reduces the effective capacity of the cache, and hence, increases cache misses. We need to compare effect from the increase of local hits against that from the increase of cache misses.
Suppose we take a snapshot of the L2 cache and find a total of R replicas. As a result, only S-R cache blocks are distinct, effectively reducing the capacity of the cache. Note that the model does not make reference to any specific cache organization and management. For instance, it does not say where the replicas are stored, which may depend on factors such as shared or private organization. It does not intend to model cache coherence interactions either. Instead, a simple ratio of data replication is used to derive extra cache misses vs. additional local hits as will be described next.
We will compare the data replication scenario with the baseline case where all S blocks are distinct. First, the cache misses are increased by
[image: image3.wmf]dx

x

f

S

R

S

ò

-

)

(

, since the total number of hits is now
[image: image4.wmf]dx

x

f

R

S

ò

-

0

)

(

. On the other hand, the replicas help to improve the local hits. Among the
[image: image5.wmf]dx

x

f

R

S

ò

-

0

)

(

 hits, a fraction R/S hits are targeting the replicas. Depending on the specific cache organization, not all accesses to the replicas result in local hits. A requesting core may find a replica in the local cache of another remote core, resulting in a remote hit. We assume that a fraction L accesses to replicas are actually local hits. Therefore, compared with the baseline case, the total change of memory cycles due to the creation of R replicas can be calculated by:

[image: image6.wmf])

1

(

)

(

)

(

0

ò

ò

-

-

´

´

´

-

´

R

S

l

S

R

S

m

dx

x

f

L

S

R

G

dx

x

f

P

where Pm is the penalty cycles of a cache miss; and Gl is the cycle gain from a local hit. With the total number of memory
accesses,
[image: image7.wmf]dx

x

f

ò

¥

0

)

(

, the average change of memory access cycles is equal to:

[image: image8.wmf])

2

(

)

(

)

(

)

(

0

0

ò

ò

ò

¥

-

-

÷

ø

ö

ç

è

æ

´

´

´

-

´

dx

x

f

dx

x

f

L

S

R

G

dx

x

f

P

R

S

l

S

R

S

m

Now the key is to obtain the reuse distance histogram f(x). We conduct experiment using an OLTP workload [21] and collect its global reuse distance histogram. With the curve-fitting tool of Matlab [19], we obtain the equation f(x) = Aexp(-Bx), where A = 6.084*106, and B = 2.658*10-3. This is shown in Figure 2, where the cross marks represent the actual reuse frequencies from OLTP and the solid line is the fitted curve. We can now substitute f(x) into equation (2) to obtain the average change in memory cycles as:

[image: image9.wmf])

3

(

)))

(

exp(

1

(

))

exp(

))

(

(exp(

R

S

B

L

S

R

G

BS

R

S

B

P

l

m

-

-

-

´

´

´

-

-

-

-

´

-

´

Equation (3) provides the change in L2 access time as a function of the cache area being occupied by the replicas. In Figure 3, we plot the change of the memory access time for three cache sizes, 2, 4, and 8 MB, as we vary the replicas’ occupancy from none to the entire cache. In this figure, we assume Gl=15, Pm= 400, and we vary L with 0.25, 0.5 and 0.75 for each cache size. Note that negative values mean performance gain. We can observe that the performance of allocating L2 space for replicas for the OLTP workload varies with different cache sizes. For instance, when L = 0.5, the results indicate no replication provides the shortest average memory access time for a 2MB L2 cache, while for larger 4MB and 8MB L2 caches, allocating 40% and 68% of the cache for the replicas has the smallest access time. These results are consistent with the reuse histogram curve shown in Figure 2. The reuse count approaches zero when the reuse distance is equal to or greater than 2MB. It increases significantly when the reuse distance is shorter than 2MB. Therefore, it is not wise to allocate space for the replicas when the cache size is 2MB or less. Increasing L favors data replication slightly. For instance, for a 4MB cache, allocating 34%, 40%, 44% of the cache for the replicas achieves the best performance improvement of about 1, 3, and 5 cycles on the average memory access time for L = 0.25, 0.5 and 0.75 respectively. The performance improvement with data replication would be more significant when Gl increases.

The general behavior due to data replication is consistent with the detailed simulation result as will be given in Section 5. Note that the fraction of replicas cannot reach 100% unless the entire cache is occupied by a single block. Therefore, in Figure 3, the average memory time increase is not meaningful
[image: image10.jpg]Reuse frequency

><

* Original data
fitted curve

0

1024 2048 3072 4096 5120 6144 7168 8102

Reuse distance (KB)

Figure 2. Curve fitting of reuse distance histogram of OLTP

[image: image11.emf]OLTP

-10

0

10

20

30

40

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8

Fraction of replication

Ave. access time increases

(Cycles)

2M-L0.25 4M-L0.25 8M-L0.25

2M-L0.5 4M-L0.5 8M-L0.5

2M-L0.75 4M-L0.75 8M-L0.75

Figure 3. Performance with replicas for different cache sizes

when the fraction of replicas is approaching to the cache size.
We also run the same experiment for two other workloads, Apache and SPECjbb. Figure 4 plots the optimal fractions of replication for all three workloads with cache size from 2 to 8MB and L from 0.25 to 0.75. The same behavior can be observed for both Apache and SPECjbb. Lager caches favor more replication. For example, with L = 0.5, allocating 13%, 50%, 72% space for replicas has the best performance for Apache, and 28%, 59%, 78% for SPECjbb. Also, increasing L favors more replication. With smaller working set, SPECjbb benefits replication the most among the three workloads.

It is essential to study a set of representative workloads with a spectrum of cache sizes to understand the tradeoff of accessibility vs. capacity on CMP caches. A fixed replication policy may not work well for a wide-variety of workloads on different CMP caches. Although mathematical modeling can provide understanding of the general performance trend, its inability to model sufficiently detailed interactions among multiple cores makes it less useful for accurate performance prediction. To remedy this problem, we will describe a global-stack based simulation for studying CMP caches next.

III. Organization of global stack

Figure 5 sketches the organization of the global stack that records the memory reference history. In the CMP context, a block address and its core-id uniquely identify a reference, where the core-id indicates from which core the request is issued. Several independent linked lists are established in the global stack for simulating a shared and several per-core private stacks. Each stack entry appears exactly in one of the
[image: image12.emf]0

20

40

60

80

2M 4M 8M 2M 4M 8M 2M 4M 8M

OLTP Apache SPECjbb

Opt. Fraction of Replication (%)

L=0.25 L=0.5 L=0.75

Figure 4. Optimal fraction of replication
private stacks determined by the core-id, and may or may not reside in the shared stack depending on the recency of the reference. In addition, an address-based hash list is also established in the global stack for fast searches.
Since only a set of discrete cache sizes are of interest for cache studies, both the shared and the private stacks are organized as groups [15]. Each group consists of multiple entries for fast search during the stack simulation and for easy calculations of cache hits under various interesting cache sizes after the simulation. For example, assuming the cache sizes of interest are 16KB, 32KB, and 64KB. The groups can then be organized according to the stack sequence starting from the MRU entry with 256, 256, 512 entries for the first three groups, respectively, assuming the block size is 64B. Based on the stack inclusion property, the hits to a particular cache size are equal to the sum of the hits to all the groups accumulated up to that cache size. Each group maintains a reuse counter, denoted by G1, G2, and G3. After the simulation, the cache hits for the three cache sizes can be computed as G1, G1 +G2, and G1+G2+G3 respectively.
Separate shared and private group tables are maintained to record the reuse frequency count and other information for each group in the shared and private caches. A shared and a private group-id are kept in each global stack entry as a pointer to the corresponding group information in the shared and the private group table. The group bound in each entry of the group table links to the last block of the respective group in the global stack. These group bounds provide fast links for adjusting entries between adjacent groups. The associated counters are accumulated on each memory request, and will be used to deduce cache hit/miss ratios for various cache sizes after the simulation. The following subsections provide detailed stack operations.
A. Shared Caches
Each memory block can be recorded multiple times in the global stack, one from each core according to the order of the requests. Intuitively, only the first-appearance of a block in the global stack should be in the shared list since there is no replication in a shared cache. A first-appearance block is the one that is most recently used in the global stack among all blocks with the same address. The shared stack is formed by linking all the first-appearance blocks from MRU to LRU. Figure 6 illustrates an example of a memory request sequence and the operations to the shared stack. Each memory request is
[image: image13.emf]Hash

prev

Hash

next

Shared

next

Private

next

Shared

prev

Private

prev

Block

address

Core

Id

Shared

group

Id

Private

group

Id

Global Stack Entry

local remote replica count

group bound

(to last block in group)

Shared Group Table Private Group Table

hole

group bound

(to last block in group)

Figure 5. Global stack organization
denoted as a block address, A, B, C, …, etc., followed by a core-id. The detailed stack operations when B1 is requested are described as follows.
· Address B is searched by the hash list of the shared stack. B2 is found with the matching address. In this case, the reuse counter for the shared group where B2 resides, group 3, is incremented.
· B2 is removed from the shared list, and B1 is inserted at the top of the shared list.

· The shared group-id for B1 is set to 1. Meanwhile, the block located on the boundary of the first group, E1, is pushed to the second group. The boundary adjustment continues to the group where B2 was previously located.
· If a requested block cannot be located through the hash list, (i.e. the very first access of the address among any cores), the stack is updated as above without incrementing any reuse counters.

· After the simulation, the total number of cache hits for a shared cache that include exactly the first m groups is the sum of all shared reuse counters from group 1 to group m.
B. Private Caches
The construction and update of the private lists are essentially the same as those of the shared list, except that we link accesses from the same core together. We collect crucial information such as the local hits, remote hits, and number of replicas, with the help of the local, remote, and replica counters in the private group table. For simplicity, we assume these counters are shared by all the cores, although per-core counters may provide more information. Figure 7 draws the contents of the four private lists and the private group table, when we extend the previous memory sequence (Figure 6) with three additional requests.
1) Local/Remote Reuse Counters
The local counter of a group is incremented when a request falls into the respective group in the local private stack. In this example, only the last request, A1, encounters a local hit, and in this case, the local counter of the second group is incremented. After the simulation, the sum of all local counters from group 1 to group m represents the total number of local hits for private caches with exactly m groups.

Counting the remote hits is a little tricky, since a remote hit may only happen when a reference is a local miss. For
[image: image14.emf]Hash List

C3

B2

A1

D4

F2

E1

Shared List

AddressGroup Address Group

F2

E1

D4

C3

B2

A1

1

1

2

2

3

3

1

1

2

2

3

3

B1

Shared Group

Count Bound

0

0

0+1

0

2

4

8

16

Group1

Group4

Group3

Group2

Block

6

Before B1 After B1

Memory Request Sequence: A1, B2, C3, D4, E1, F2, B1,…..

B1

F2

E1

D4

C3

A1

After B1

List 0 List 1

Figure 6. Shared cache example
example, assume that a request is in the third group of the local stack; meanwhile, the minimum group id of all the remote groups where this address appears is the second. When the private cache size is only large enough to contain the first group, neither a local nor a remote hit happens. If the cache contains exactly two groups, the request is a remote hit. Finally, if the cache is extended to the third group or larger, it is a local hit. Formally, if an address is present in the local group L and the minimum remote group that contains the block is R, the access can be a remote hit only if the cache size is within the range from group R to L-1. We increment the remote counters for groups R to L-1 (R <= L-1). Note that after the simulation, the remote counter m is the number of remote hits for a cache with exactly m groups. To differentiate them from the local counters, we call them accumulated remote counters.

In the example, the first highlighted request, B1, encounters a local miss, but a remote hit to B2 in the first group. We accumulate the remote counters for all the groups. The second request, A2, is also a local miss, but a remote hit to A1 in the second group. The remote counter of the first group remains unchanged, while the counters are incremented for all the remaining groups. Similar to B1, all the remote counters are incremented for C1. Finally, the last request, A1, is a local hit in the second group and is also a remote hit to A2 in the first group. In this case, only the remote counter of the first group is incremented since A1 is considered as a local hit if the cache size extends to more than the first group.
2) Measuring Replica
The effective cache size is an important factor for shared and private cache comparisons [2, 9, 30, 8]. The single-pass stack simulation counts each block replication as a replica for calculating the effective cache size along the simulation. Similar to the remote hit case, we use accumulated replica counters. As shown in Figure 7, the first highlighted request, B1, creates a replica in the first group, as well as any larger groups because of the presence of B2. The second highlighted request, A2, does not create a new replica in the first group. But it does create a new replica in the second group because of A1. Meanwhile, A2 pushes B2 out of the first group, thus reduces a replica in the first group. This new replica applies to all the larger groups too. Note that the addition of B2 in the
[image: image15.emf]Memory Request Sequence: A1, B2, C3, D4, E1, F2, B1, A2, C1, A1, …..

E1

A1

Private Group

Local

0+0+0+0+1

Accumulated

Replica

Accumulated

Remote

Bound

0+1+1+1+0 0+0+0+0+0

0+1+1+1+0 0+1+1+1+0

0+1-1+1+1 0+1+0+1+1 0+0+0+0+0

0+1+1+1+0

2

4

8

Core

1

Core

4

Core

3

Core

2

Private List after B1

C3 D4 F2

B2 E1

A1

Core

1

Core

4

Core

3

Core

2

C3 D4

F2

B2

B1 A2 B1

Private List after A2

E1

A1

Core

1

Core

4

Core

3

Core

2

Private List after C1

C3 D4

F2

B2

E1

A1

Core

1

Core

4

Core

3

Core

2

C3 D4

F2

B2 B1

A2

B1

Private List after A1

A2 C1

C1

Figure 7. Private cache example
second group does not alter the replica counter for group 2, since the replica was already counted when B2 was first referenced. Similar to B1, the third highlighted request, C1, creates a replica to all the groups. Lastly, the reference, A1, extends a replica of A into the first group because of A2. The counters for the remaining groups stay the same.
3) Handling Memory Writes
In private caches, memory writes may cause invalidations to all the replicas. During the stack simulation, write invalidations create holes in the private stacks where the replicas are located. These holes will be filled later when the adjacent block is pushed down from a more-recently-used position by a new request. No block will be pushed out of a group when a hole exists in the group. To accurately maintain the reuse counters in the private group table, each group records the total number of holes for each core. The number of holes is initialized to the respective group size, and is decremented whenever a valid block joins the group. The hole-count for each group avoids searching for existing holes.
IV. Simulation Methodology

We use the full-system Virtutech Simics 2.2 simulator [18] to simulate an 8-core CMP system with Linux 9.0 and x86 ISA. The processor module is based on the Simics Microarchitecture Interface (MAI) and models timing-directed processors in detail. Each core has its own instruction and data L1 cache. The global stack runs behind the L1 caches and simulates every L1 misses, essentially replacing the role of L2 caches. During simulations, stack distances and other related statistics are collected as described in Section 3. The results of the single-pass stack simulation are used to derive the performance of shared or private caches with various cache sizes and the sharing mechanisms for understanding the accessibility-vs.-capacity tradeoff in CMP caches.

The results from the stack simulation are verified against execution-driven simulations, where detailed cache models with proper access latencies are inserted. In those simulations, we assume the shared L2 has eight banks, with one local and seven remote determined by the least-significant three bits of the block address. For the private L2, we model both local and remote accesses. The MOESI coherence protocol is used to maintain data coherence among private L2s. For comparison,
TABLE I. Simulation parameters
	CMP: 8 cores, 3.2GHz, 128 entry ROB

Branch predictor: g-share, 64K, 4K BTB

Branch misprediction penalty: 10 cycles

L1-I: 32KB, 4-way, 64B line, MESI

L1-D: 32KB, 4-way, 64B line, MESI

L1-I/L1-D latency: 0/2 cycles

L2: 16-way, 64B line, MESI

Private L2 size (KB): 128/256/512/1024/2048 per core

Private L2 local/remote latency: 15/30 cycles

Shared L2: 8 banks, 1 local/7 remote

Shared L2 size (MB): 1/2/4/8/16

Shared L2 local/remote latency: 15/30 cycles

Memory latency: 400 cycles

Stack: 16KB / group, 1024 groups (16MB maximum)

we use the hit/miss information and average memory access times to approximate the execution time behavior because the single-pass stack simulation cannot provide IPCs. Table 1 summarizes important simulation parameters.
We use three multithreaded commercial workloads, OLTP, Apache, and SPECjbb, as described in Table 2. We consider the variability of these multithreaded workloads by running multiple simulations for each configuration of each workload and inserting small random noises (perturbations) in the memory system timing for each run.
TABLE II. Workloads description
	OLTP (Online Transaction Processing): It is built upon the OSDL-DBT-2 [21] and MySQL database server 5.0. We build a 1GB, 10-warehouse database. To reduce the database disk activity, we increase the size of the MySQL buffer pool to 512MB. We further stress the system by simulating 128 users with no keying and thinking time. We simulate 1024 transactions after bypassing 2000 transactions and warming up caches (or stack) for another 256 transactions.

	Apache (Static web server): We run apache 2.2 as the web server, and use Surge to generate web requests from a 10,000 file, about 200MB repository. We simulate 8 clients with 50 threads per client. We collect statistics for 8192 transactions after bypassing 2500 requests and warming up for 2048 transactions.

	SPECjbb (java server): We simulate 8 warehouses. We first fast-forward 100,000 transactions. Then we simulate 20480 transactions after warming up the structures for 4096 transactions.

V. Evaluation and validation

The accuracy of the CMP memory performance projection can be assessed from two different angles, the accuracy of predicting individual performance metrics, and the accuracy of predicting general cache behavior. By verifying the results against the execution-driven simulation, we demonstrate that the stack simulation can accurately predict cache hits and misses for the targeted L2 cache organizations, and more importantly, it can precisely project the sharing and replication behavior of the CMP caches.

One inherent weakness of stack simulation is its inability to insert accurate timing delays for variable L2 cache sizes. The fluctuation in memory delays may alter the sequence of memory accesses among multiple processors. We try a simple approach to insert memory delays based on a single discrete cache size. In the stack simulation, we inserted memory delays based on five cache sizes 1MB, 2MB, 4MB, 8MB, and 16MB,
[image: image16.emf]OLTP

0%

4%

8%

12%

16%

20%

1M 2M 4M 8M 16M

Cache size

Shared miss rate

Real

Stack-1

Stack-2

Stack-4

Stack-8

Stack-16

[image: image17.emf]Apache

0%

4%

8%

12%

16%

20%

1M 2M 4M 8M 16M

Cache size

Shared miss rate

Real

Stack-1

Stack-2

Stack-4

Stack-8

Stack-16

[image: image18.emf]SPECjbb

0%

4%

8%

12%

16%

20%

24%

1M 2M 4M 8M 16M

Cache size

Shared miss rate

Real

Stack-1

Stack-2

Stack-4

Stack-8

Stack-16

Figure 8. Miss ratios for shared caches
denoted as stack-1, stack-2, stack-4, stack-8, and stack-16 respectively. An off-chip cache miss latency is charged if the reuse distance is longer than the selected discrete cache size.
C. Hits/Misses for Shared and Private L2 Caches

Figure 8 shows the projected and real miss rates for shared caches, where “real” represents the results from individual execution-driven simulations. In general, the stack results follow the execution-driven results closely. For OLTP, stack-2 shows only about 5-6% average error. For Apache and SPECjbb, the difference among different delay insertions is less apparent. The stack results predict the miss ratios with about 2-6% error, except for Apache with a small 1MB cache.

Two major factors affect the accuracy of the stack results. One is cache associativity. Since we use a fully-associative stack to simulate a 16-way cache, the stack simulation usually underestimates the real miss rates. This effect is more apparent when the cache size is small, due to more conflict misses. The issue can be solved by more complicated set-associative stack simulations [20, 12]. For simplicity, we keep the stack fully-associative. More sensitivity studies also need to evaluate L2 with smaller set associativity. The other factor is inaccurate delay insertions. For example, in the stack-1 simulation of OLTP, a cache miss latency is inserted whenever the reuse distance is longer than 1MB. Such a cache miss delay is inserted wrongly for caches larger than the 1MB. These extra delays for larger caches cause more OS interference and context switches that may lead to more cache misses. At 4MB cache size, the overestimate of cache misses due to the extra delay insertion exceeds the underestimate due to the full associativity. The gap becomes wider with larger caches. On the other hand, the stack-16 simulation for smaller caches mistakenly inserts hit latency, instead of miss latency, for accesses with reuse distance from the corresponding cache size to 16MB, causing less OS interferences, thus less misses. In this case, both the full associativity and the delay insertion lead to underestimate of the real misses, which makes the stack-16 simulation the most inaccurate.

Figure 9 shows the private cache results. The overall misses, the remote hits and the average effective sizes are compared. Note that the horizontal axis shows the size of a single core. With eight cores, the total sizes of the private caches are comparable to the shared cache sizes in Figure 8. We can make two important observations. First, comapring with the shared cache, the simulation results show that the overall L2 miss ratios are increased by 14.7%, 9.9%, 4.3%, 1.1%, and 0.5% for OLTP for the private cache sizes from 128KB to 1MB. For Apache and SPECjbb, the L2 miss ratios are increased by 11.8%, 4.4%, 1.1%, 1.0%, 2.2%, and 7.3%, 3.1%, 2.9%, 0.6%, 0.5%, respectively. Second, the estimated miss and remote hit rates from the stack simulation match closely to the results from the execution-driven simulations, with less than 10% margin of errors. We also simulate the effective capacity for the private-cache cases. The effective cache size is the average over the entire simulation period. In general, the private cache reduces the cache capacity due to replicated and invalid cache entries. The effective capacity is reduced to 45-75% for the three workloads with various cache sizes. The estimated capacity from the stack simulation is almost identical to the result from the execution-driven simulation. Due to its higher accuracy, we use the stack-2 simulation in the following discussion.
D. Shared Caches with Replication
To balance accessibility and capacity, victim-replication [30] creates a dynamic L1 victim cache for each core in the local slice of the L2 to trade capacity for fast local access. In this section, we estimate the performance of a static victim-replication scheme. We allocate 0% to 50% of the L2 capacity as L1 victim caches with variable L2 sizes from 2MB to 8MB. For performance comparison, we use the average memory access time, which is calculated based on the local hits to victim caches, the hits to shared portion of L2, and L2 misses.

The average memory access time of the static victim replication can be derived directly from the results of the stack simulation described in the previous sections. Assuming the inclusion property is enforced between the shared potion of the L2 and the victim potion plus the L1. Suppose the L1 and L2 sizes are denoted by CL1, and CL2, r is the percentage of the L2 allocated for the victim cache, and n is the number of the cores. Then, each victim-cache size is equal to (r*CL2)/n, and the remaining shared portion is equal to (1-r)*CL2. The average memory access time includes the following components. First, since the L1 and the victim cache are exclusive, the total hits to the victim cache can be estimated from the private stacks with the size of the L1 plus the size of the victim:CL1+(r*CL2)/n. Note that this estimation may not be precise due to the lack of the L1 hit information that alters the sequence in the stack. Second, the total number of L2 hits (including the victim portion) and L2 misses can be calculated from the shared stack with the size (1-r)*CL2. Finally, the hit to the shared portion of L2 can be calculated by subtracting the hits to the victim from the total L2 hits.
Figure 10 demonstrates the average L2 access time with static victim replication. Generally, large caches favor more
[image: image19.emf]OLTP

0%

10%

20%

30%

40%

50%

128k 256k 512k 1M 2M

Cache size

Miss rate & remote hit rate

Real miss Stack-1 miss Stack-2 miss

Stack-4 miss Stack-8 miss Stack-16 miss

Real rhit Stack-1 rhit Stack-2 rhit

Stack-4 rhit Stack-8 rhit Stack-16 rhit

[image: image20.emf]OLTP

0

2

4

6

8

10

12

14

16

128k 256k 512k 1M 2M

Cache size

Effective size (MB)

Upper bound

Real

Stack-1

Stack-2

Stack-4

Stack-8

Stack-16

[image: image21.emf]Apache

0%

10%

20%

30%

40%

50%

128k 256k 512k 1M 2M

Cache size

Miss rate & remote hit rate

Real miss Stack-1 miss Stack-2 miss

Stack-4 miss Stack-8 miss Stack-16 miss

Real rhit Stack-1 rhit Stack-2 rhit

Stack-4 rhit Stack-8 rhit Stack-16 rhit

[image: image22.emf]Apache

0

2

4

6

8

10

12

14

16

128k 256k 512k 1M 2M

Cache size

Effective size (MB)

Upper bound

Real

Stack-1

Stack-2

Stack-4

Stack-8

Stack-16

[image: image23.emf]SPECjbb

0%

10%

20%

30%

40%

50%

128k 256k 512k 1M 2M

Cache size

Miss rate & remote hit rate

Real miss Stack-1 miss Stack-2 miss

Stack-4 miss Stack-8 miss Stack-16 miss

Real rhit Stack-1 rhit Stack-2 rhit

Stack-4 rhit Stack-8 rhit Stack-16 rhit

[image: image24.emf]SPECjbb

0

2

4

6

8

10

12

14

16

128k 256k 512k 1M 2M

Cache size

Effective size (MB)

Upper bound

Real

Stack-1

Stack-2

Stack-4

Stack-8

Stack-16

Figure 9. Miss ratio, remote hit ratio and average effective size for private caches

replications. For a small 2MB L2, except that Apache has a slight performance gain at low replication levels, the average L2 access times increase with more replications. The optimal replication levels for OLTP are 12.5%, and 37.5% respectively for 4MB and 8MB L2. This general performance behavior with respect to data replication is consistent with what we have observed from the analytical model in section 2. However, the analytical model without cache invalidations should apply lower L for the optimal replication level.

For SPECjbb, 12.5% replication shows the best for both 4MB and 8MB L2. The figure for Apache shows that the performance is better with replications as large as 50% for 4MB, but 37.5% for 8MB L2s. The seemly contradiction comes from the fact that L2 misses start to reduce drastically around 8M caches, as demonstrated in Figure 8. We can also
[image: image25.emf]OLTP

20

40

60

80

100

0.0% 12.5% 25.0% 37.5% 50.0%

Percentage of replication area

Ave. L2 access time (Cycles)

Real-2M Real-4M Real-8M

Stack-2M Stack-4M Stack-8M

[image: image26.emf]Apache

60

65

70

75

80

85

90

0.0% 12.5% 25.0% 37.5% 50.0%

Percentage of replication area

Ave. L2 access time (Cycles)

Real-2M Real-4M Real-8M

Stack-2M Stack-4M Stack-8M

[image: image27.emf]SPECjbb

40

50

60

70

80

90

100

110

120

0.0% 12.5% 25.0% 37.5% 50.0%

Percentage of replication area

Ave. L2 access time (Cycles)

Real-2M Real-4M Real-8M

Stack-2M Stack-4M Stack-8M

Figure 10. Average L2 access time with different replication
observe that the optimal replication levels match perfectly between the stack simulations and the execution-driven simulations. With respect to the average L2 access time, the stack results are within 2%-8% error margins.
E. Private Caches without Replication

Private caches sacrifice capacity for fast access time. It may be desirable to limit replications in the private caches. To understand the impact of the private L2 without replication, we run a separate stack simulation in which the creation of a replica causes the invalidation of the original copy.

Figure 11 demonstrates the L2 access delays of the private caches without replication, shown as the ratio to those of the private caches with full replication. As expected, with small 128KB and 256KB private caches per core, the average L2 access times without replication are about 5-17% lower than those with full replication for all the three workloads. This is because the benefit of the increased capacity more than compensates the loss of local accesses. With large 1MB or 2MB caches per core, the average L2 access time of the private caches without replication is 12-30% worse than the
[image: image28.emf]OLTP

0.6

0.8

1

1.2

1.4

128k 256k 512k 1M 2M

Cache size

Ave. L2 access time ratio

Real

Stack

base

[image: image29.emf]Apache

0.6

0.8

1

1.2

1.4

128k 256k 512k 1M 2M

Cache size

Ave. L2 access time ratio

Real

Stack

base

[image: image30.emf]SPECjbb

0.6

0.8

1

1.2

1.4

128k 256k 512k 1M 2M

Cache size

Ave. L2 access time ratio

Real

Stack

base

Figure 11. Average L2 access time ratio of private caches without replication
full-replication counterpart, suggesting that increasing local accesses is beneficial when enough L2 capacity is available. The stack simulation results follow this trend perfectly. They provide very accurate results with only 2-5% margin of error.

F. Simulation Time Comparison

The full-system Virtutech Simics 2.2 simulator [18] to simulate an 8-core CMP system with Linux 9.0 and x86 ISA is running on Intel Xeon 3.2 GHz 2-way SMP. The simulation time of each stack or execution-driven simulation is measured on a dedicated system without other interference. A timer was inserted at the beginning and the end of each run to calculate the total execution time. Detailed descriptions of the three workloads have been given in Table 2. In the single-pass stack simulation, each stack is partitioned into 16KB groups with a total of 1024 groups for the 16MB cache. This small 16KB groups are necessary in order to study shared caches with variable percentage of replication areas as shown in Figure 10. The stack simulation time can be further reduced for cache organizations that only require a few large groups.
Table 3 summaries the simulation times for the stack and the execution-driven simulations using the three workloads to obtain the simulation results in Section 5. For each workload, two stack simulations are needed. One run is for producing the results for shared caches, private caches, and shared caches with replication, and the other run is for the private L2 without replication. In execution-driven simulations, it requires a separate run for each cache size resulting in five runs for each cache organization. In studying the shared cache with replication, five separate runs are needed for each cache size in order to simulate five different replication percentages. No separate stack simulation is required for the shared cache with replication. Similarly, no separate execution-driven simulation is needed for shared caches with 0% area for data replication. Therefore we have 20 runs for the shared with replication for execution-driven simulations. The total number of simulation runs is also summarized in Table 3. The total stack simulation time is measured about 4751 minutes, while the execution-driven simulation takes 58016 minutes, a factor over 12 times. This gap can be much wider if more cache organizations and sizes are studied and simulated.

TABLE III. simulation time comparison (In MInutes)
	Measurement
	Workload
	Stack
	Execution-Driven

	Shared / Private
(Section 5.1)
	OLTP
	1 Run: 835
	(5+5) Runs: 6252

	
	Apache
	1 Run: 901
	(5+5) Runs: 6319

	
	SPECjbb
	1 Run: 582
	(5+5) Runs: 4220

	Shared with replication

(Section 5.2)
	OLTP
	0 Run: 0
	20 Runs: 11976

	
	Apache
	0 Run: 0
	20 Runs: 12211

	
	SPECjbb
	0 Run: 0
	20 Runs: 8210

	Private no replication

(Section 5.3)
	OLTP
	1 Run: 872
	5 Runs: 3257

	
	Apache
	1 Run: 948
	5 Runs: 3372

	
	SPECjbb
	1 Run: 613
	5 Runs: 2199

	Total
	
	4751
	58016

VI. Related work

Optimizing on-chip storage space on CMPs has been studied extensively [2, 17, 9, 23, 30, 8, 3, 25, 14, 13, 16]. The goal is to dynamically allocate data blocks for fast access without adversely increasing off-chip traffic due to the L2 misses. These studies must examine a wide-spectrum of the design space, which requires costly simulations.

There have been several techniques for speeding up cache simulations. Mattson, et al. [20] presents a stack algorithm to measure cache misses for multiple cache sizes in a single pass. For fast search through the stack, tree-based stack algorithms [4, 27] are proposed. Kim, et al. [15] provides a much faster simulation by maintaining the reuse distance counts only to a few potential cache sizes. All-associativity simulations [7, 2] and generalized forest simulations [12, 24] allow a single-pass simulation for variable set-associativities. Meanwhile, various prediction models have been proposed to provide quick cache performance estimation [1, 11, 10, 27, 5, 6]. They apply statistical models to analyze the stack reuse distances. But, it is generally difficult to model systems with complex real-time interactions among multiple processors. StatCache [5] estimates capacity misses using sparse sampling and static statistical analysis.

All above techniques target uniprocessor systems where there is no interference between multiple threads. Several works aim at modeling multiprocessor systems [28, 29, 7, 6]. StatCacheMP [6] extends StatCache to incorporate communication misses. It assumes a random replacement policy for the statistical model. Chandra, et al [7] propose three analytical models based on the L2 stack distance or circular sequence profile of each thread to predict inter-thread cache contentions on the CMP for multiprogrammed workloads that do not have interference with each other. Two other works [28, 29] extends stack simulations to multiprocessors. However, they pay attention only to miss ratios, update ratios, and invalidate ratios. The proposed stack simulation method aims at the L2 caches on CMPs where the remote cache hits are an important performance metric. The single-pass stack simulator simulates both shared and private L2 caches, and projects the cache performance for various CMP cache organizations with different degrees of sharing.

VII. Conclusion

In this paper, we developed an abstract model for understanding the general performance behavior of data replication in CMP caches. The model showed that data replication could degrade cache performance without a sufficiently large capacity. We then used the global stack simulation for more detailed study on the issue of balancing accessibility and capacity for on-chip storage space on CMPs. With the stack simulation, we can explore a wide-spectrum of the cache design space in a single simulation pass. We simulated the schemes of shared/private caches, and shared caches with replication of various cache sizes. We verified the stack simulation results with execution-driven simulations using commercial multithreaded workloads. We showed that the single-pass stack simulation can characterize the CMP cache performance with high accuracy. Our results proved that the effectiveness of various techniques to optimize the CMP on-chip storage is closely related to the total L2 size.

Acknowledgment

This work was supported in part by NSF grant EIA-0073473 and by research and equipment donations from Intel Corp. We also thank anonymous referees for their helpful comments.

References

[1]
A. Agarwal, M. Horowitz and J. Hennessy, “An Analytical Cache Model,” ACM Transactions on Computer Systems, Vol. 7, No. 2, May 1989, pp. 184-215.

[2]
B. Beckmann and D. Wood, “Managing Wire Delay in Large Chip-Multiprocessor Caches,” Proc. of 37th Int’l Symp. on Microarchitecture, Dec. 2004, pp. 319-330.

[3]
B. M. Beckmann, M. R. Marty, and D. A. Wood. “ASR: Adaptive Selective Replication for CMP Caches,” Proc. of the 39th Int’l Symp. on Microarchitecture, Dec. 2006.

[4]
B. T. Bennett and V. J. Kruskal, “LRU Stack Processing,” IBM journal of R & D, July 1975, pp. 353-357.

[5]
E. Berg and E. Hagersten, “StatCache: A Probabilistic Approach to Efficient and Accurate Data Locality Analysis,” Proc. of Int’l Symp. on Performance Analysis of Systems and Software, March 2004.

[6]
E. Berg, H. Zeffer and E. Hagersten, “A Statistical Multiprocessor Cache Model,” Proc. of Int’l Symp. on Performance Analysis of Systems and Software, March 2006.

[7]
D. Chandra, F. Guo, S. Kim and Y. Solihin, “Predicting Inter-Thread Cache Contention on a Chip Multi-Processor Architecture”, Proc. of 11th Int’l Symp. on High Performance Computer Architecture, Feb. 2005, pp. 340-351.

[8]
J. Chang and G. Sohi, “Cooperative Caching for Chip Multiprocessors,” Proc. of 33rd Int’l Symp. on Computer Architecture, June 2006.

[9]
Z. Chishti, M. D. Powell and T. N. Vijaykumar, “Optimizing Replication, Communication, and Capacity Allocation in CMPs,” Proc. of 32nd Int’l Symp. on Computer Architecture, June 2005, pp. 357-368.

[10]
G. Edwards, S. Devadas, and L. Rudolph, “Analytical Cache Models with Applications to Cache Partitioning,” Proc.of 15th Int’l Conf. on Supercomputing, June 2001, pp. 1-12.

[11]
B. Fraguela, R. Doallo, and E. Zapata, “Automatic Analytical Modeling for the Estimation of Cache Misses,” Proc. of Int’l Conf. on Parallel Architectures and Compilation Techniques, Sep. 1999.

[12]
M. Hill and J. Smith, “Evaluating Associativity in CPU Caches”, IEEE Transactions on Computers, Dec. 1989, pp. 1612-1630.

[13]
J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger and S. W. Keckler, “A NUCA Substrate for Flexible CMP Cache Sharing,” Proc. of 19th Int’l Conf. on Supercomputing, June, 2005.

[14]
C. Kim, D. Burger, and S. Keckler, “An Adaptive Non-uniform Cache Structure for Wire-delay Dominated On-chip Caches,” Proc. of 10th Int’l Conf. on Architectural Support for Programming Languages and Operating Systems, Oct. 2002.

[15]
Y. H. Kim, M. D. Hill and D. A. Wood, “Implementing Stack Simulation for Highly-associative Memories,” Proc. of 1991 SIGMETRICS conf. on Measurement and Modeling of Computer Systems, May 1991, pp. 212-213.

[16]
R. Kumar, V. Zyuban, and D. M. Tullsen. “Interconnections in Multi-core Architectures: Understanding Mechanisms, Overhead and Scaling,” Proc. of 32nd Int’l Sump. on Computer Architecture, June 2005.

[17]
C. Liu, A. Sivasubramaniam and M. Kandemir, “Organizing the Last Line of Defense before Hitting the Memory Wall for CMPs,” Proc. of 10th Int’l Symp. on High Performance Computer Architecture, Feb. 2004, pp. 176-185.

[18]
P. S. Magnusson et al. “Simics: A Full System Simulation Platform,” IEEE Computer, Feb. 2002, pp. 50-58.

[19]
Matlab, http://www.mathworks.com/products/matlab/.

[20]
R. Mattson, J. Gecsei, D. Slutz, and I. Traiger, “Evaluation Techniques and Storage Hierarchies,” IBM Systems Journal, 9, 1970, pp. 78-117.

[21]
Open Source Development Labs. Open source development labs database test 2. http://www.osdl.org/lab_activities/kernel_testing/osdl_database_test_suite/osdl_dbt-2/.

[22]
X. Shi, F. Su, J. Peir, Y. Xia, and Z. Yang, “CMP Cache Performance Projection: Accessibility vs. Capacity,” Workshop on Design, Architecture and Simulation of Chip Multi-Processors (dasCMP2006), in conjunction with the 39th Annual International Symposium on Microarchitecture, Dec 2006.

[23]
E. Speight, H. Shafi, L. Zhang and R. Rajamony, “Adaptive Mechanisms and Policies for Managing Cache Hierarchies in Chip Multiprocessors,” Proc. of 32nd Int’l Symp. on Computer Architecture, June 2005, pp. 346-356.

[24]
R. A. Sugumar and S. G. Abraham, “Set-associative Cache Simulation using Generalized Binomial Trees,” ACM Transactions on Computer Systems, Vol. 13, No. 1, Feb. 1995, pp. 32-56.

[25]
G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic Partitioning of Shared Cache Memory,” The Journal of Supercomputing, 28(1), 2004, pp. 7-26.

[26]
J. G. Thompson, “Efficient Analysis of Caching Systems,” Computer Science Division Technical Report UCB/Computer Science Dept. 87/374, University of California, Berkeley, October 1987.

[27]
X. Vera and J. Xue, “Let’s Study Whole-Program Cache Behavior Analytically,” Proc. of 8th Int’l Symp. on High Performance Computer Architecture, Feb. 2002.

[28]
C. E. Wu, Y. Hsu, Y. Liu, “Efficient Stack Simulation for Shared Memory Set-Associative Multiprocessor Caches,” Proc. of 1993 Int’l Conf. on Parallel Processing, Aug. 1993.

[29]
Wu, Y. and Muntz, R. 1995, “Stack Evaluation of Arbitrary Set-Associative Multiprocessor Caches,” IEEE Transactions on Parallel and Distributed Systems, Sep. 1995, pp. 930-942.

[30]
M. Zhang, and K. Asanovic, “Victim Replication: Maximizing Capacity while Hiding Wire Delay in Tiled Chip Multiprocessors,” Proc. of 32nd Int’l Symp. on Computer Architecture, June 2005, pp. 336-345.

PAGE

_1232444320.unknown

_1232444322.unknown

_1232444366.unknown

_1232444321.unknown

_1232444319.unknown

