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Abstract Cache coherence activities with write-
inwalidate protocol in Symmetric Multiprocessors
not only incur overhead but may increase cache
miss ratios due to unnecessary invalidations. Un-
der software synchronization models, a lazy cache
coherence protocol delays write invalidations and
permits inconsistent copies of the same cache line
ezisting in different caches. In this paper, we pro-
pose a demand-driven two-phase deferred cache co-
herence model which further delays writes to be ob-
served by other processors until a processor requests
the new data after certain synchronization instruc-
tions. Data dependence can be maintained by iden-
tifying when the new data must be fetched and rec-
onciled. Cycle-by-cycle execution-driven simulation
of SPLASH-2 workload shows that the two-phase
deferred coherence protocol can out-perform the ea-
ger protocol up to 30% for some workload.
Keywords: Symmetric Multiprocessor (SMP),
Cache Coherence Protocol, Snooping Bus, False
Sharing, Execution-Driven Simulation

1 Introduction

Symmetric multiprocessor (SMP) technology
has been adapted in most today’s severs to
achieve higher performance. Each processor is
typically equipped with a coherent cache mem-
ory to hide the memory access latency and to
reduce the critical shared bus traffic. The key
cache coherence function is to guarantee that
each processor always observes all the memory
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writes from any other processor. Whenever a
processor writes to a memory location, the old
copy of the data existing in other caches must
be updated or invalidated. Such a cache coher-
ence activity not only incurs heavy overhead,
but may increase cache miss ratios due to the
false-sharing behavior. The false-sharing oc-
curs when multiple processors attempt to up-
date different portion of a cache line about the
same time [5, 4].

In fact, this cache coherence activity can
be deferred until the next synchronization in-
struction to allow multiple processors updat-
ing the same cache line as long as software
maintains an order of reads and writes to each
memory location [1, 6, 3]. Under the soft-
ware model, synchronization instructions are
inserted to enforce certain order of memory ac-
cesses from different processors. As a result,
any producer/consumer data among the pro-
cessors must be synchronized. This software
synchronization model allows reordering mem-
ory reads and writes without violating sequen-
tial consistency [1, 6]. It provides flexibility to
cache coherence mechanisms on when to make
writes to be globally visible.

The traditional eager coherence protocol en-
forces the cache coherence on every memory
write [10]. The lazy coherence protocol, on
the other hand, permits temporary inconsis-
tent cache copies [3, 8, 9, 2, 7]. Those copies
of data in different caches need to be recon-
ciled only after the execution of a synchroniza-



tion instruction. Although this lazy coherence
protocol eliminates unnecessary cache coher-
ence activities, it incurs significant overhead
on posting writes and reconciling cache lines
at each synchronization instruction.

In this paper, we describe a two-phase de-
ferred cache coherence model on bus-based
SMPs that further delay posting writes until
a processor requests the new data. There are
two fundamental issues for maintaining correct
data dependence under lazy coherence pro-
tocols. The first issue is when each proces-
sor must recognize that it is in danger to ac-
cess stale data. The second issue is when the
inconsistent data created by multiple writers
must be reconciled and posted. The proposed
two-phase deferred coherence protocol sepa-
rates the event of write notification, and the
event of data reconciliation and posting. At the
first phase, all the cache lines are marked after
each synchronization instruction notifying the
need for reconciliation of certain inconsistent
copies. At the second phase, a marked cache
line when first referenced, triggers the reconcil-
iation to merge the inconsistent lines into con-
sistent state. This demand-driven data recon-
ciliation and posting alleviate the overhead at
each synchronization point. Furthermore, in
case the inconsistent cache lines are replaced
before they are referenced, the reconciliation
can be overlapped with the normal execution.

An efficient hardware merging technique is
used to minimize the overhead associated with
reconciliation. This technique uses the orig-
inal copy of the data in memory to identify
and merge the modified portion of a cache line
for restoring the comsistent copy. Cycle-by-
cycle execution-driven simulation of SPLASH-
2 workload [12] shows that the two-phase de-
ferred coherence protocol can out-perform the
eager protocol up to 30% for some workload.

2 Motivation

In the popular Single-Program-Multiple-Data
(SPMD) computation of parallel programs, the
same program is sent to the participating pro-
cessors and individual processor executes dif-

ferent pieces of work by operating on different
pieces of data. A parallel program is laid out
as a sequence of code regions separated by bar-
rier synchronization primitives. At each bar-
rier, no process is allowed to proceed until all
the processes participating the barrier synchro-
nization arrive so as to enforce proper data
dependency. In addition, the other common
synchronization requirement in SPMD is to al-
low mutual-exclusive updates of certain shared
variables such as loop indices, processor IDs,
etc. by individual processors during the course
of parallel execution.

The barrier and the mutual exclusion are
the two synchronization primitives used in the
parallelized SPLASH-2 application suites [12].
The use of mutual exclusion and barrier syn-
chronization presents two fundamental prop-
erties. First, a barrier must be inserted to
enforce a producer/consumer data dependence
between two processes. As a result, the up-
dates of a shared variable only need to be ob-
served by the consumer process after the execu-
tion of a barrier. Second, although the mutual-
exclusive updates of a shared variable in a crit-
ical section can be executed in any order, the
updates must be observed by other processes
once the updating process leaves the critical
section. Based on these observations, a de-
ferred coherence protocol can be designed to
postpone write posting until the new data is
requested after the synchronization.

The proposed deferred coherence protocol
works well with the release memory consis-
tency model [6]. Given that software maintains
proper order of memory reads and writes to the
same memory location, hardware only needs to
enforce the order of memory reads/writes with
respect to synchronization instructions. As a
result, writes can be deferred until after the
subsequent synchronization point.

3 Two-Phase Deferred Coher-
ence Protocol

In the proposed deferred coherence protocol,
a new partially-modified (P) state is added



to the write-invalidate, write-back, Modified-
Exclusive-Shared-Invalid (MESI) state proto-
col. A line in the P-state means the line is valid
and has been modified by the local processor,
meanwhile, such a line may also be valid and
possibly modified in other caches. A S-state
line is changed to the P-state upon a write-hit
and the write can be performed locally. When
a write-miss occurs, the new line is set to P-
state if the line is also valid in another cache.
In addition, an M-state line is changed to the
P-state when another processor encounters a
write-miss to the same line. In essence, the ad-
ditional P state permits a line to be shared and
modified to enable concurrent reads and writes
to different portion of the same line among
multiple processors.

Since a line in the P-state or even the S-
state may be stale after each synchronization
barrier, it is necessary to invalidate/reconcile
those inconsistent lines. The reconciliation of
the P-state lines can be further delayed until
the line is first accessed or replaced after the
barrier. However, each processor must iden-
tify potential stale lines existing in its local
cache. We add one extra bit called the mark
bit to each entry in the cache tag directory. All
mark bits in every cache directory are set after
each synchronization barrier to indicate poten-
tial stale lines as follows.

1. Marked P-state: The line must be rec-
onciled upon the first access from either
the local processor or the remote proces-
sor through the snooping bus. The request
is reissued afterwards.

2. Marked M-state: The line is treated the
same as a M-state line except the marked
M-state line is sent to both the requester
and the memory on the first access to up-
date the memory copy.

3. Marked S-state: The line is treated the
same as a S-state line if the line is not
present in the P-state in any other cache.
The line is invalid otherwise.

4. Marked E, I states: The same as the cor-
responding unmarked states.

The mark bits can be implemented as a sep-
arate array for fast set/reset all the bits. The
corresponding mark bit is reset at the first ac-
cess after a barrier to resume normal coherence
activities to the cache line. Note that a marked
S-state line become suspicious. The is because
the S and the P states of the same line can co-
exist in multiple caches. Reconciliation of indi-
vidual line is also required when both marked
and unmarked P-state lines are replaced from
the cache.

Requests from local processor:

1. Read-hit: When the requested line is
found in the local cache, the data can be
accessed and the state, M, E, S, or P re-
mains unchanged.

2. Write-hit: The write can be performed
locally without any global request. The
states, S and E, are changed to P and M
respectively, while states P and M remain
unchanged.

3. Read-miss: A line-fill request is issued.
The new state is E when the requested line
is not present in any other cache. If the
requested line is M in another cache, the
cache which owns the modified copy sup-
plies the data, and the new state is also
set to E while the owner set to I state af-
ter writing back the line into memory. If
the requested line exists in other caches in
any other state, E, S, or P, the new state
becomes S and the line is fetched from the
memory.

4. Write-miss: Write-allocation is assumed.
Upon a write-miss, the target line is
fetched from the memory. The new state
is M when the requested line does not ex-
ist in any other cache. Otherwise, the new
state becomes P.

5. Hit a marked P-state or replace a P- or
marked P-state line: Cache line reconcili-
ation is initiated. Detailed description will
be given in the next section.

Requests from snooping bus:




1. Snooping read-hit: Upon a snooping read-
hit, the processor sends the modified (M-
state) data to the requester and the mem-
ory. The line is invalidated afterwards. In
case of a hit to an E-state, the state is
changed to S without involving any data
transfer. No action is taken when the state
is either S, or P.

2. Snooping write-hit: Similar to a snooping
read-hit except that no data transfer is
needed for a M-state hit and the state is
changed to P.

3. Snooping read/write hits a marked line:
Follow the rules of accessing a marked line.

4. Replacement write-back hit to a P- or
marked P-state line: Upon a hit, the
snooping agent also writes back the P- or
marked P-state line so that the reconcili-
ation of the line can be carried out at the
memory controller. The line is invalidated
afterwards. The line in the S-state is sim-
ply invalidated without sending the data.

4 Reconcile Cache Lines

The performance of the deferred coherence
protocol depends heavily on an efficient way
of merging the partially modified lines. The
write-back of a P- or marked P-state line is
triggered under two conditions. First, a P- or
marked P-state line is replaced from a cache.
Second, a processor or a snooping request hits
a marked P-state line.

When a partially-modified line write-back
is initiated, all other processors that have the
same P-state or marked P-state line also write
back their own copy of the line. It is essential
to provide an efficient way of merging those
partially-modified cache line copies to restore
the consistent copy in the memory. To elimi-
nate the need of recording the portion of the
cache line being modified in each processor, we
use a merging technique to identify the mod-
ified portion and to reconcile the inconsistent

n
New Data = Old Data @ ( U (Old Data) @ (Pstate Data); )

i=1
Figure 1: Reconciliation of n P-state copies

copies. This technique requires a special de-
sign of the memory controller. Upon receiv-
ing a partially-modified write-back request, the
memory controller begins to merge the origi-
nal cache line content stored in the memory
with the new copies of the cache line from in-
volved processors in a pipeline fashion. Ba-
sically, the merging algorithm performs a se-
quence of ezclusive-or logic operations to iden-
tify the bit positions where the modification
has been made. The new cache content can
then be obtained by complementing the values
of those bit positions as shown in Figure 1.

To simplify the memory controller design,
we assume the multiple copies of the partially
modified line arrive at memory controller con-
tinuously without being intervened by other re-
quests. In order to satisfy this requirement,
the processor from which the P-state write-
back is initiated must hold the data bus un-
til the completion of all the write-backs. In
addition, the snooping controllers, once receiv-
ing a P-state write-back request, will preempt
any other request. Since the P-state write-back
involves multiple copies of a cache line and
each copy must be sent sequentially through a
shared data bus, the overhead associated with
the merging operations can be overlapped with
the P-state line transfer.

5 Performance Evaluation

Mint, an execution-driven MIPS-based multi-
processor simulation tool [11] is used in this
study to compare the performance of the ea-
ger and the deferred coherence protocols using
the SPLASH-2 workload [12]. We assume each
instruction takes one cycle to execute using
a perfect branch predictor when the instruc-
tion is found in the L instruction cache. The
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Figure 2: Normalized Execution Time of SPLASH-2 Applications: upper(P=32), lower(P=64)

load/store instruction also takes a single cycle
if both the instruction and the data are located
in the Ly caches. A delay of 4 cycles is charged
when the instruction or the data is not located
in the L; cache, but present in the Lo cache.
Further delays are incurred according to de-
tailed bus/memory cycles when the requested
instruction and data miss the L, cache. We
assume a separate direct-mapped instruction
and data L; cache of 8 Kilo-Bytes (KB) with
a 512KB combined 4-way set-associative Lo
cache. Note that we simulate small Ly caches
because of small data sizes in SPLASH-2 ap-
plications. The cache line size is 64 bytes for
both L1 and Lo caches. We further assume a

write-miss will not stop the processor pipeline
until another miss is encountered or the write

buffer is full.

Split-transaction snooping buses based on
the MESI and the deferred coherence proto-
cols are modeled. In view of the current tech-
nology, we assume the processor cycle is four
times faster than the bus cycle. The snooping
bus consists of separate command/address bus
and data bus. The width of the data bus is 16
bytes and a 64-byte cache line can be trans-
ferred in 4 consecutive cycles. The command
bus can accept a request every three cycles.
Once a request is active, it requires two cycles
for bus arbitration. The command and address
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Figure 3: Ly miss ratio comparison (P=64)

are issued right after the bus is granted. It then
takes two cycles for each processor to look-up
and update the cache directory for the snoop-
ing request. The processor receives the data in
seven bus cycles after issuing a request.

Figure 2 shows the normalized execution of
the SPLASH-2 benchmarks on SMPs with 32
and 64 processors. The execution time is nor-
malized with respect to the execution time un-
der the MESI-state coherence protocol on a 32-
processor system. The total execution time is
divided into 5 timing components. The Ideal
cycle is the time to execute the respective pro-
gram without any stall, i.e., the CPI is equal
to 1. The Read/Write miss penalty represents
the delay associated with read/write penalties
when the requested data is not in the L1 cache
(also includes coherence miss penalties). The
Barrier wait characterizes the delay introduced
by the load imbalance between barriers. Fi-
nally, the Other stall is the remaining delays
due to snooping bus busy, snooping conflicts,
merging of the P-state lines, etc.

A few interesting facts can be found from
the figure. First, the ideal execution times of
the applications are almost reduced to half for
most applications when the number of proces-
sors increases from 32 to 64. However, the
penalty cycles are considerably larger on 64
processors. In fact, in some cases, such as
Cholesky, the total execution time increases on

the 64-processor systems for both MESI and
deferred coherence schemes. The primary rea-
son is due to bus congestion which causes fur-
ther delays on read/write misses, write-backs,
and cache reconciliations on a 64-processor sys-
tem than that on a 32-processor system.

In terms of relative performance comparison
between the MESI the deferred protocols, the
deferred coherence scheme, generally speaking,
shows better performance than that of the con-
ventional MESI-state protocol especially on 64-
processor systems where the bus is more con-
gested. Even on a 32-processor system, no-
ticeable improvement by the deferred proto-
col can be seen for the workloads Ocean_Cont.,
Ocean_Non., and Raytrace. On a 64-processor
system, the deferred scheme shows about 6%,
4%, 3%, 30%, 30%, 8%, and 3% improvement
of the total execution time over the MESI-state
protocol for benchmarks Cholesky, FFT, Fmm,
Ocean_Cont., Ocean_Non., Raytrace, and Vol-
rend, respectively. Under the deferred coher-
ence protocol, coherence misses caused by data
sharing are reduced as shown in Figure 3. As a
result, we can see a noticeable reduction in to-
tal read/write miss penalties in Figure 2. For
some workloads, however, the performance dif-
ference between the MESI and the deferred
protocols is very minor as we notice that this
set of fine-tuning applications have very little
false-sharing behavior [12].



6 Conclusion

The deferred cache coherence protocol with a
new partially-modified state is designed and
evaluated. The unique feature is to allow
inconsistent copies of a modified cache line
in multiple caches temporarily to circumvent
the adverse effect of the false-sharing behav-
ior in parallel programs. In addition, the two-
phase write posting and the efficient merg-
ing algorithm further reduce the overhead as-
sociated with the deferred coherence model.
Execution-driven, cycle-by-cycle simulation of
snooping-bus multiprocessor models are devel-
oped to evaluate the performance of the pro-
posed method. The results based on paral-
lel applications from SPLASH-2 show that the
proposed two-phase coherence protocol can in-
deed improve the overall performance.
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