
CHAPTER 3: CONCURRENT PROCESSES

AND PROGRAMMING

Chapter outline

• Thread implementations

• Process models

• The client/server model

• Time services

• Language constructs for synchronization

• Concurrent programming systems

1

Processes and threads

• Processes: separate logical address space

• Threads: common logical address space

Major Issues

• Process/thread creation

• Light weight context switching

• Blocking and scheduling

2

Two-level concurrency of processes and threads

PCB

TCB TCB TCB

th
re

ad

th
re

ad

th
re

ad

PCB

TCB TCB TCB

th
re

ad

th
re

ad

th
re

ad

PCB

th
re

ad

process

Native Computer System

Single thread
Multiple thread processes

Thread run-time library support

Native operating system

Thread applications

thread

thread

thread

bu
ff

er

main
thread

threadw
ri

te

re
ad

requests

dispatcher asynchronous requests

(b) File server(a) Terminal server (c) Client

Identical static threads Dynamic threads with Concurrent and

3

Thread implementations

• User space: simple but non-preemptable

• Kernel space: efficient but not portable

Solaris thread implementation

multiple processor system

LWP LWP LWP LWP

Heavy-weight process Heavy-weight process

User space threads

Light-weight processes

Kernel space threads

4

Process models

Synchronous Process, Asynchronous Communication, Time-Space

Graph representations

precedence

relations

communication

channels

one - way

client / server

peer

communication scenarios
Synchronous process graph

Asynchronous process graph and

5

Time-space model

Processes

P1

P2

P3

P4

: communication

: events

Sp
ac

e

Time

Client/server model

client server

kernel kernel
network

request

reply

actual communication

logical communication

6

Time services

• time and timer

• physical and logical clocks

Physical clock

A distributed time service architecture

TS

TSTS TC

TC

Distributed Time Service

Client

Time Clerks

T�ime

Servers

External UTC

Sources

Time Discrepancies

UTC 5

discarded new UTC

UTC 4

UTC 3

UTC 2

UTC 1

7

Lamport Logical Clock

The happens-before relationship: →

1. If a → b within a same process then C(a) < C(b).

2. If a is the sending event of Pi and
b is the corresponding receiving event of Pj, then a → b and
Ci(a) < Cj(b).

For it to be possible for a to have an influence on b, then a → b must be true.

Implementation:

C(b) = C(a) + d and
Cj(b) = max(TSa + d, Cj(b)),
where TSa is the timestamp of the sending event and d is a positive number.

42

43

55

56 80

81

d = 1

57

5840 45 60

20 50 60

50 75

a, c,b,

d, e, f,

g, h,

So, a → b =⇒ C(a) < C(b), but C(a) < C(b) =⇒/ a → b.

8

Vector Logical Clock

Used so that if Ci(a) < Cj(b) then a → b.

Define V Ci = [TS1, TS2, ..., Ci, ..., TSn],
where n is the number of cooperating processes.

On message receipt, use pair-wise maximum.

V Cj [j] = V Cj[j] + d
V Cj [k] = max(V Cj [k], TSi[k]) : l = 1..n

TS = VCi

j

Pj’s Lamport Clock

elementwise max
merge

VCj

k

Pj’s knowledge of Pk’s Lamport Clock

V Cj [j] is Pj’s count of events that have occured at Pj ,
V Cj [k] is Pj’s knowledge of events that have occured at Pk.

200

220

242

250

450

244

274

100a,

010d, 230 260

001 243

e, f,

g, h,

300b, 550c,

240

9

Matrix Logical Clock

MCi represents
Pi’s knowledge of its local events (MCi[i, i]),
its knowledge of the events that Pj knows about (MCi[i, j]), and
its knowledge of Pj’s knowledge of events at Pk (MCi[j, k]).

MCi[i, i] = MCi[i, i] + d – Pi updates local event counter on send

When Pj receives a message from Pi with timestamp TS, MCj [j, l] =
max(MCj [j, l], TSi[i, l]) : l = 1..n update vector clock, and

MCj [k, l] = max(MCj [k, l], TSi[k, l]) : k = 1..n, l = 1..n update Pk’s
knowledge of Pl’s counter

i

i

i,i

j j

Pi’s Vector Clock

Pj’s Vector Clock

Pi’s knowledge of Pk’s Vector Clock Pj’s knowledge of Pk’s Vector Clockk k

i

MCjTS = MCi

Pj’s knowledge of Pi’s Vector Clock

Pi’s knowledge of Pj’s knowledge of Pi’s Lamport Clock

elementwise max
merge

10

Concurrent languages

• Specification of concurrent activities

• Synchronization of processes

• Interprocess communication

• Nonderterministic execution of processes

Language constructs

• Program structure

• Data structure

• Control structure

• Procedure and system call

• Input and output

• Assignment

11

Synchronization mechanisms and language facilities

Synchronization Methods Language Facilities

Shared-Variable Synchronization

semaphore shared variable and system call
monitor data type abstraction
conditional critical region control structure
serializer data type and control structure
path expression data type and program structure

Message Passing Synchronization

communicating sequential processes input and output
remote procedure call procedure call
rendezvous procedure call and communication

Shared-variable synchronization

• Semaphore and conditional critical region

• Monitor and serializer

• Path expression

Classic Problems

• Critical Section

• Dining Philosophers

• Readers/Writers

• Producer-Consumer
12

Example: the Reader/Writer Problems
synchronization + concurrency

Basics

• if DB empty, allow anyone in

• if reader in DB, writer not allowed in

• if writer in DB, nobody allowed in

Write Lock

Lock Held

Write LockRead Lock

Read Lock

Requested
Lock

Variations

• reader preference

Allow a reader in if other readers are in

• strong reader preference

Allow readers in when writer leaves

• weak reader preference

When writer leaves, select a process at random

• weaker reader preference

Allow a writer in when writer leaves

• writer preference

Do not allow readers in if writer is waiting

13

Semaphore solution to the weak reader preference problem

var mutex=1, db=1: semaphore; rc=0: integer

reader processes writer processes

do (forever) do (forever)
BEGIN BEGIN

otherStuff() otherStuff()

P(mutex)
rc := rc + 1
if rc = 1 then P(db) P(db)
V(mutex)

read database write database

P(mutex)
rc := rc -1
if rc = 0 then V(db) V(db)
V(mutex)

END END

14

Monitor solution

rw : monitor
var rc : integer; busy : boolean; toread, towrite : condition;

procedure startread procedure endread
begin begin
if busy then toread.wait;
rc := rc + 1; rc := rc - 1;
toread.signal; if rc = 0 then towrite.signal;
end end

procedure startwrite procedure endwrite
begin begin
if busy or rc 6= 0
then towrite.wait; busy := false;
busy := true; toread.signal or towrite.signal;
end end

begin rc := 0; busy := false end
—————————————————————-
reader processes writer processes

do (forever) BEGIN do (forever) BEGIN

otherStuff() otherStuff()

rw.startread rw.startwrite
read database write database
rw.endread rw.endwrite

END END

15

CCR solution

var db: shared; rc: integer;

reader processes writer processes

region db begin rc := rc + 1 end; region db when rc = 0
read database begin write dat abase end
region db begin rc := rc - 1 end;

Serializer solution

rw : serializer
var readq, writeq: queue; rcrowd, wcrowd: crowd;

procedure read
begin
enqueue(readq) until empty(wcrowd);
joincrowd(rcrowd) then begin read database end;
end

procedure write
begin
enqueue(writeq) until (empty(wcrowd) and empty(rcrowd));
joincrowd(wcrowd) then begin write database end;
end

Path Expression solution

path 1:([read],write) end

16

Message Passing Synchronization

• Asynchronous: non-blocking send, blocking receive

• Synchronous: blocking send, blocking receive

Mutual exclusion using asyn. msg. passing

process Pi channel server process Pj

begin begin begin
receive(channel) create channel receive(channel)
critical section send(channel) critical section
send(channel) manage channel send(channel)
end end end

Mutual exclusion using syn. msg. passing

process Pi semaphore server process Pj

begin loop begin
send(sem,msg) receive(pid,msg) send(sem,msg)
critical section send(pid,msg) critical section
receive(sem,msg) end receive(sem,msg)
end end

17

Communicating Sequential Processes (CSP)

P : Q!exp, Q: P ?var, and guarded commands
Process P executes Q!(x + y),
. then expression x + y is evaluated and sent to process Q.
Process Q executes P ?z,
. then process Q sets variable z to the value received from process P

ADA rendezvous

task rw is
entry startread;
entry endread;
entry startwrite;
entry endwrite;

end

task body rw is
rc: integer := 0;
busy: boolean := false;

begin
loop

select
when busy = false →

accept startread do rc := rc + 1 end;
or

→

accept endread do rc := rc - 1 end;
or

when rc = 0 and busy = false →

accept startwrite do busy = true end;
or

→

accept endwrite do busy = false end;
end loop
end;

18

Concurrent Programming Languages

A taxonomy

synchronization and communication mechanisms

shared variable message passing

type

abstraction

control

structure

program

structure

monitor CCR Path

asynchronous

direct

process

naming

procedure

naming

indirect

port/mailbox

naming

synchronous

request / reply

(passive)

rendezvous

(active)

process

naming

procedure

naming

process

naming

procedure

naming

RPC

asynchronous

RPC

rendezvous

form of RPC

Concurrent

Pascal

Path

Pascal

PLITS Gypsy CSP ADA

Argus DP DP

Concurrent C

SR

SR

X-11

window

sockets

embedded

in many OS

noneDP

asymmetric symmetric

19

Coordination languages

• OCCAM: based on CSP process model, use PAR, ALT, and SEQ con-
structors, use explict global links for communication.

• SR: based on resource (object) model, use synchronous CALL and asyn-
chronous SEND and rendezvous IN, use capability for channel naming.

• LINDA: based on distributed data structure model, use tuples to repre-
sent both process and object, use blocking IN and RD and non-blocking
OUT for communication.

concurrent programming

language

concurrent programming

language

concurrent programming

paradigm

OCCAM

SR

LINDA

processes

resources

distributed

data structures

static

global channels

dynamic

capabilities

associative

tags

System Object model Channel naming

20

Distributed and Network Programming

Programming languages for loosely coupled systems:

ORCA

fork process-name(parameters) [on (processor-number)];

operation op(parameters)
guard condition do statements;
guard condition do statements;

invoke(object, operation, parameters)

t[1] = 6, A, 8
t[6] = 0, B, 0
t[8] = 0, C, 0

JAVA

• Well-defined standard interfaces for integrating software modules

• Capability of running software modules on any machine

• Infrastructure for coordinating and transporting software modules

Applet and system security

21

