CHAPTER 3: CONCURRENT PROCESSES
AND PROGRAMMING

Chapter outline

e Thread implementations

Process models

The client/server model

e Time services

Language constructs for synchronization

Concurrent programming systems

Processes and threads

e Processes: separate logical address space

e Threads: common logical address space

Major Issues

e Process/thread creation
e Light weight context switching

e Blocking and scheduling

Two-level concurrency of processes and threads

Native Computer System

PCB

TCB

TCB | TCB TCB

TCB

TCB

thread

thread

thread
thread
thread

thread

thread

Single thread
process

Multiple thread processes

Thread run-time library support

Native operating system

Thread applications

(@) Terminal server

Identical static threads

(b) File server

main

write
ead

Dynamic threads with
dispatcher

(c) Client
—
requests
—

asynchronous requests

Concurrent and

Thread implementations

e User space: simple but non-preemptable

e Kernel space: efficient but not portable

Solaris thread implementation

Heavy-weight process Heavy-weight process

User space threads

| |
LWP LWP LWP LWP Light-weight processes

Kernel space threads

multiple processor system

Process models

Synchronous Process, Asynchronous Communication, Time-Space

Graph representations

precedence
relations

communication
channels

ke,

one - way

client / server

H
-

peer

=

Asynchronous process graph and

Synchronous process graph

communication scenarios

Time-space model

: communication

. events

Processes
ol 7
. I I
! Y]
- N
P4 [I
Time
Client /server model
logical communication
request
I
client server
- - - - -
reply
\l/ /I\ actual communication \l/ /I\
kernel _— kernel
network

Vv V. V.V

Time services

e time and timer

e physical and logical clocks

Physical clock

A distributed time service architecture

Distributed Time Service

@

External UTC
Sources

—_—=

©

@ i \/\ Client

/ Time Clerks

Time
Servers

Time Discrepancies

UuTC1
UTC?2
UTC3
utCc4
UTCS5

discarded
—-

new UTC

Lamport Logical Clock

The happens-before relationship: —

1. If a — b within a same process then C(a) < C(b).

2. If a is the sending event of P; and
b is the corresponding receiving event of P;, then a — b and

C'Z(a) < Cj(b)

For it to be possible for a to have an influence on b, then a — b must be true.

Implementation:

C(b) = C(a) +d and
C;(b) = max(TS, + d, C;(b)),

where T'S, is the timestamp of the sending event and d is a positive number.

d=1
a,4|0 4|2 b,4|5 58. c,6IO
d,2|0 | e,5|0 55 f, 6.0 8|1
43 57
0,50 h,75

56 80

So,a — b = C(a) < C(b), but C(a) < C(b) == a—b.

Vector Logical Clock

Used so that if C;(a) < C;(b) then a — b.

Define VCZ = [TSl, TSQ, ey CZ', ey TSn],
where n is the number of cooperating processes.

On message receipt, use pair-wise mazimum.

VCljl =Vl +d
VCjlk] = max(VC,[k], TS;[k]) : l=1.n

TS = VCi

elementwise max
merge

VCj .

o

V' C;[j] is P;’s count of events that have occured at P;,
VC;[k] is P;’s knowledge of events that have occured at Pj.

A I N

Pj’'s Lamport Cloc Pj’s knowledge of Pk’s Lamport Clock

2100 200 b,300 450, 550
d,010 e 230 240 {260 274
| | | | |
220 250
g,001 h, 243
| | |
242 244

Matrix Logical Clock

MC; represents

P;’s knowledge of its local events (MC;[i, 1)),

its knowledge of the events that P; knows about (MC;li, j]), and
its knowledge of P;’s knowledge of events at P, (MC;[j, k]).
MC;li, i) = MC;li,i] + d — P; updates local event counter on send

MC;[k, 1]

When P; receives a message from P; with timestamp 7°S, MC;[j,1] =
max(MC;[j,1],TS;[i,1]) : | =1..n update vector clock, and

knowledge of P,’s counter

TS = MCi elementwise max

= max(MC;[k, 1], TS;[k,1])

Pi's knowl

b of Pk’s Vector Clock

Pi's Vector Clock

merge
—_—
—_—

—>

—_]

k= 1.n, | = 1.n update P’s

MCj

Pj's knowledge of Pk’s Vector Clock

Pj's knowledge of Pi's Vector Clock

Pj's Vector Clock

Pi’'s knowledge of Pj's knowledge of Pi's Lamport Clock

10

Concurrent languages

Specification of concurrent activities

Synchronization of processes

Interprocess communication

Nonderterministic execution of processes

Language constructs

e Program structure

Data structure

Control structure

Procedure and system call

Input and output

e Assignment

11

Synchronization mechanisms and

language facilities

Synchronization Methods

‘ Language Facilities

Shared-Variable Synchronization

semaphore shared variable and system call
monitor data type abstraction
conditional critical region control structure

serializer data type and control structure

path expression

data type and program structure

Message Passing

Synchronization

communicating sequential processes

input and output

remote procedure call

procedure call

rendezvous

procedure call and communication

Shared-variable synchronization

e Semaphore and conditional critical region

e Monitor and serializer

e Path expression

Classic Problems

e Critical Section
e Dining Philosophers
e Readers/Writers

e Producer-Consumer

12

Example: the Reader/Writer Problems
synchronization + concurrency

Basics

e if DB empty, allow anyone in

e if reader in DB, writer not allowed in

e if writer in DB, nobody allowed in

Lock Lock Held
Requested | Read Lock Write Lock
Read Lock \/ ><
Write Lock >< ><

Variations

reader preference

Allow a reader in if other readers are in

strong reader preference

Allow readers in when writer leaves

weak reader preference

When writer leaves, select a process at random

weaker reader preference

Allow a writer in when writer leaves

writer preference

Do not allow readers in if writer is waiting

13

Semaphore solution to the weak reader preference problem

var mutex=1, db=1: semaphore; rc=0: integer

reader processes

do (forever)
BEGIN

otherStuff()

P(mutex)
rc:=rc+1

if rc = 1 then P(db)
V(mutex)

read database

P(mutex)
rc:=rc-1
if rc = 0 then V(db)
V(mutex)

END

writer processes

do (forever)
BEGIN

otherStuff()

P(db)

write database

V(db)

END

14

Monitor solution

rw : monitor
var rc : integer; busy : boolean; toread, towrite : condition,;

procedure startread procedure endread

begin begin

if busy then toread.wait;

rc :=rc + 1; rc :=rc- 1;

toread.signal; if rc = 0 then towrite.signal;
end end

procedure startwrite procedure endwrite

begin begin

if busy or rc # 0

then towrite.wait; busy := false;

busy := true; toread.signal or towrite.signal,
end end

begin rc := 0; busy := false end

reader processes writer processes
do (forever) BEGIN do (forever) BEGIN
otherStuff() otherStuff()
rw.startread rw.startwrite

read database write database
rw.endread rw.endwrite

END END

15

CCR solution

var db: shared; rc: integer;

reader processes writer processes
region db begin rc :=rc + 1 end; region db when rc = 0
read database begin write dat abase end

region db begin rc :=rc - 1 end,;

Serializer solution

rw : serializer
var readq, writeq: queue; rcrowd, wcrowd: crowd;

procedure read

begin

enqueue(readq) until empty(wcrowd);
joincrowd(rcrowd) then begin read database end,;
end

procedure write

begin

enqueue(writeq) until (empty(wcrowd) and empty(rcrowd));
joincrowd(wcrowd) then begin write database end,;

end

Path Expression solution

path 1:([read],write) end

16

Message Passing Synchronization

o Asynchronous: non-blocking send, blocking receive

e Synchronous: blocking send, blocking receive

Mutual exclusion using asyn. msg. passing

process P,
begin
receive(channel)
critical section
send(channel)
end

channel server
begin

create channel
send(channel)
manage channel
end

process P;
begin
receive(channel)
critical section
send(channel)
end

Mutual exclusion using syn. msg. passing

process P,
begin
send(sem,msg)
critical section
receive(sem,msg)
end

semaphore server

loop
receive(pid,msg)
send(pid,msg)
end

17

process P;
begin
send(sem,msg)
critical section
receive(sem,msg)
end

Communicating Sequential Processes (CSP)

P: Qlexp, Q: P?var, and guarded commands
Process P executes Q!(x + y),
then expression x + y is evaluated and sent to process ().
Process () executes P7z,
then process () sets variable z to the value received from process P

ADA rendezvous

task rw is
entry startread,
entry endread;
entry startwrite;
entry endwrite;
end

task body rw is
rc: integer = 0;
busy: boolean := false;

begin
loop
select
when busy = false —
accept startread do rc := rc + 1 end;
or
N
accept endread do rc := rc - 1 end;
or
when rc = 0 and busy = false —
accept startwrite do busy = true end;
or
N
accept endwrite do busy = false end;
end loop
end:;

18

Concurrent Programming Languages

A taxonomy

synchronization and communication mechanisms

|

shared variable message passing
type control program asynchronous synchronous
abstraction structure structure
monitor CCR Path
‘ ‘ ‘ direct procedure indirect asymmetric symmetric
| | | process naming port/mailbox request/ reply rendezvous
! ! ! naming ‘ naming (passive) (active)
! ! | | !
| | | | |
| | } 1 asynchronous 1 ’—‘—‘ ’—‘—‘
| | | | RPC |
1 1 1 l ! } process procedure process procedure
|
1 1 1 l ! | naming naming naming naming
|
l l l } ‘ | ‘ ‘ ‘ ‘
I I I | ! | | I
| | | | l | | |
: : : 1 | ! | RPC | rendezvous
| |
: : : 1 : 1 [: [form of RPC
| |
| | S 1 o | ‘ ‘
I I I | ! | ! I |
| | | | I | I ! I I
| | | | [| ! ! | |
| | | | [| ! ! | |
| | o 1 o ? 1 1
Concurrent DP Path PLITS X-11 Gypsy none embedded CspP ADA
Pascal Argus Pascal window SR in many OS DP DP
sockets Concurrent C
SR

19

Coordination languages

o OCCAM: based on CSP process model, use PAR, ALT, and SEQ con-
structors, use explict global links for communication.

e SR: based on resource (object) model, use synchronous CALL and asyn-
chronous SEND and rendezvous IN, use capability for channel naming.

e LINDA: based on distributed data structure model, use tuples to repre-
sent both process and object, use blocking IN and RD and non-blocking
OUT for communication.

System Object model Channdl naming
concurrent programming static
OCCAM processes
language globa channels
concurrent programming dynamic
SR resources —_
language capabilities
LINDA concurrent programming distributed associative
paradigm data structures tags

20

Distributed and Network Programming

Programming languages for loosely coupled systems:

ORCA

fork process-name(parameters) [on (processor-number)];

operation op(parameters)
guard condition do statements;
guard condition do statements;

invoke(object, operation, parameters)

t[1] =6,A,8

t[6] = 0, B,0

t[8] =0,C,0
JAVA

o Well-defined standard interfaces for integrating software modules
e Capability of running software modules on any machine

e Infrastructure for coordinating and transporting software modules

Applet and system security

21

