CHAPTER 3: CONCURRENT PROCESSES
AND PROGRAMMING

Chapter outline

e Thread implementations

Process models

The client/server model

e Time services

Language constructs for synchronization

Concurrent programming systems



Processes and threads

e Processes: separate logical address space

e Threads: common logical address space

Major Issues

e Process/thread creation
e Light weight context switching

e Blocking and scheduling



Two-level concurrency of processes and threads
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Thread implementations

e User space: simple but non-preemptable

e Kernel space: efficient but not portable

Solaris thread implementation
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Process models

Synchronous Process, Asynchronous Communication, Time-Space
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Time-space model
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Time services

e time and timer

e physical and logical clocks

Physical clock

A distributed time service architecture

Distributed Time Service
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Lamport Logical Clock

The happens-before relationship: —

1. If a — b within a same process then C(a) < C(b).

2. If a is the sending event of P; and
b is the corresponding receiving event of P;, then a — b and

C'Z(a) < Cj(b)

For it to be possible for a to have an influence on b, then a — b must be true.

Implementation:

C(b) = C(a) +d and
C;(b) = max(TS, + d, C;(b)),

where T'S, is the timestamp of the sending event and d is a positive number.

d=1
a,4|0 4|2 b,4|5 58. c,6IO
d,2|0 | e,5|0 55 f, 6.0 8|1
43 57
0,50 h,75

56 80

So,a — b = C(a) < C(b), but C(a) < C(b) == a—b.



Vector Logical Clock

Used so that if C;(a) < C;(b) then a — b.

Define VCZ = [TSl, TSQ, ey CZ', ey TSn],
where n is the number of cooperating processes.

On message receipt, use pair-wise mazimum.

VCljl =Vl +d
VCjlk] = max(VC,[k], TS;[k]) : l=1.n

TS = VCi

elementwise max
merge

VCj .

o

V' C;[j] is P;’s count of events that have occured at P;,
VC;[k] is P;’s knowledge of events that have occured at Pj.
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Matrix Logical Clock

MC; represents

P;’s knowledge of its local events (MC;[i, 1)),

its knowledge of the events that P; knows about (MC;li, j]), and
its knowledge of P;’s knowledge of events at P, (MC;[j, k]).
MC;li, i) = MC;li,i] + d — P; updates local event counter on send

MC;[k, 1]

When P; receives a message from P; with timestamp 7°S, MC;[j,1] =
max(MC;[j,1],TS;[i,1]) : | =1..n update vector clock, and

knowledge of P,’s counter

TS = MCi elementwise max

= max(MC;[k, 1], TS;[k,1])
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Concurrent languages

Specification of concurrent activities

Synchronization of processes

Interprocess communication

Nonderterministic execution of processes

Language constructs

e Program structure

Data structure

Control structure

Procedure and system call

Input and output

e Assignment
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Synchronization mechanisms and

language facilities

Synchronization Methods

‘ Language Facilities

Shared-Variable Synchronization

semaphore shared variable and system call
monitor data type abstraction
conditional critical region control structure

serializer data type and control structure

path expression

data type and program structure

Message Passing

Synchronization

communicating sequential processes

input and output

remote procedure call

procedure call

rendezvous

procedure call and communication

Shared-variable synchronization

e Semaphore and conditional critical region

e Monitor and serializer

e Path expression

Classic Problems

e Critical Section
e Dining Philosophers
e Readers/Writers

e Producer-Consumer
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Example: the Reader/Writer Problems
synchronization + concurrency

Basics

e if DB empty, allow anyone in

e if reader in DB, writer not allowed in

e if writer in DB, nobody allowed in

Lock Lock Held
Requested | Read Lock Write Lock
Read Lock \/ ><
Write Lock >< ><

Variations

reader preference

Allow a reader in if other readers are in

strong reader preference

Allow readers in when writer leaves

weak reader preference

When writer leaves, select a process at random

weaker reader preference

Allow a writer in when writer leaves

writer preference

Do not allow readers in if writer is waiting
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Semaphore solution to the weak reader preference problem

var mutex=1, db=1: semaphore; rc=0: integer

reader processes

do (forever)
BEGIN

otherStuff()

P(mutex)
rc:=rc+1

if rc = 1 then P(db)
V(mutex)

read database

P(mutex)
rc:=rc-1
if rc = 0 then V(db)
V(mutex)

END

writer processes

do (forever)
BEGIN

otherStuff()

P(db)

write database

V(db)

END
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Monitor solution

rw : monitor
var rc : integer; busy : boolean; toread, towrite : condition,;

procedure startread procedure endread

begin begin

if busy then toread.wait;

rc :=rc + 1; rc :=rc- 1;

toread.signal; if rc = 0 then towrite.signal;
end end

procedure startwrite procedure endwrite

begin begin

if busy or rc # 0

then towrite.wait; busy := false;

busy := true; toread.signal or towrite.signal,
end end

begin rc := 0; busy := false end

reader processes writer processes
do (forever) BEGIN do (forever) BEGIN
otherStuff() otherStuff()
rw.startread rw.startwrite

read database write database
rw.endread rw.endwrite

END END
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CCR solution

var db: shared; rc: integer;

reader processes writer processes
region db begin rc :=rc + 1 end; region db when rc = 0
read database begin write dat abase end

region db begin rc :=rc - 1 end,;

Serializer solution

rw : serializer
var readq, writeq: queue; rcrowd, wcrowd: crowd;

procedure read

begin

enqueue(readq) until empty(wcrowd);
joincrowd(rcrowd) then begin read database end,;
end

procedure write

begin

enqueue(writeq) until (empty(wcrowd) and empty(rcrowd));
joincrowd(wcrowd) then begin write database end,;

end

Path Expression solution

path 1:([read],write) end
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Message Passing Synchronization

o Asynchronous: non-blocking send, blocking receive

e Synchronous: blocking send, blocking receive

Mutual exclusion using asyn. msg. passing

process P,
begin
receive(channel)
critical section
send(channel)
end

channel server
begin

create channel
send(channel)
manage channel
end

process P;
begin
receive(channel)
critical section
send(channel)
end

Mutual exclusion using syn. msg. passing

process P,
begin
send(sem,msg)
critical section
receive(sem,msg)
end

semaphore server

loop
receive(pid,msg)
send(pid,msg)
end
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process P;
begin
send(sem,msg)
critical section
receive(sem,msg)
end



Communicating Sequential Processes (CSP)

P: Qlexp, Q: P?var, and guarded commands
Process P executes Q!(x + y),
then expression x + y is evaluated and sent to process ().
Process () executes P7z,
then process () sets variable z to the value received from process P

ADA rendezvous

task rw is
entry startread,
entry endread;
entry startwrite;
entry endwrite;
end

task body rw is
rc: integer = 0;
busy: boolean := false;

begin
loop
select
when busy = false —
accept startread do rc := rc + 1 end;
or
N
accept endread do rc := rc - 1 end;
or
when rc = 0 and busy = false —
accept startwrite do busy = true end;
or
N
accept endwrite do busy = false end;
end loop
end:;
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Concurrent Programming Languages

A taxonomy

synchronization and communication mechanisms
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Coordination languages

o OCCAM: based on CSP process model, use PAR, ALT, and SEQ con-
structors, use explict global links for communication.

e SR: based on resource (object) model, use synchronous CALL and asyn-
chronous SEND and rendezvous IN, use capability for channel naming.

e LINDA: based on distributed data structure model, use tuples to repre-
sent both process and object, use blocking IN and RD and non-blocking
OUT for communication.

System Object model Channdl naming
concurrent programming static
OCCAM processes
language globa channels
concurrent programming dynamic
SR resources —_
language capabilities
LINDA concurrent programming distributed associative
paradigm data structures tags
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Distributed and Network Programming

Programming languages for loosely coupled systems:

ORCA

fork process-name(parameters) [on (processor-number)];

operation op(parameters)
guard condition do statements;
guard condition do statements;

invoke(object, operation, parameters)

t[1] =6,A,8

t[6] = 0, B,0

t[8] =0,C,0
JAVA

o Well-defined standard interfaces for integrating software modules
e Capability of running software modules on any machine

e Infrastructure for coordinating and transporting software modules

Applet and system security
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