
Computer and Network Security

c©Copyright 2000 R. E. Newman

Computer & Information Sciences & Engineering

University Of Florida

Gainesville, Florida 32611-6120

nemo@cise.ufl.edu

Public Key Cryptography
(Pfleeger Ch. 3, KPS Ch. 5, 6)

Group Theory and Intractibility

1 Intro to PKC

1.1 Role of PKC

Help for symmetric cryptography...

1. Traditional cryptography is symmetric: both principals hold a common secret (the key) used for both
encryption and decryption.

2. There, the primary problem is key distribution.

3. PKC can help solve that problem by providing cryptographically secure channels for key distribution.

Other properties

1. Message signing that can be verified by anyone with nonrepudiation

2. New problem: secure association of the key with the principal

3. Leads to some very deep philosophical issues

4. Solutions lead to such concepts as the ”web of trust” and PKI

5. PKC is usually very slow, because it relies on large integer arithmetic

6. Typically used to send symmetric key that is used for encrypting and decrypting messages

7. To sign a message, rather than signing the whole message, a small message digest is computed using one of
the one-way hash functions and that result is then signed.

2 Basics of PKC

1. Two keys are used instead of one.

2. One key made public, so secure channel not necessary

3. Other key kept secret, available only to principal with which key pair associated.

4. If e is the public key and d is the private key, then for plaintext p, ciphertext c is

c = E(p, e)

which is decrypted by
p = D(c, d) = D(E(p, e), d)

5. Anyone with e can encrypt a message, but only keyholder with d can decrypt it.

6. To sign p, use reverse operations:
s = D(p, d)

to verify, recipient checks that
v = E(s, e) = E(D(p, d), e) = p

7. For this, necessary that encryption and decryption commute, but they do in most cases.

8. If not, then different signing key used and the message is encrypted with it, then verified by decrypting with
public verification key.

3 Modular Arithmetic

3.1 Groups

3.1.1 Definition

A group is a pair G = 〈S, ⋄〉, where S is a set and ⋄ is a binary function on S, that satisfies the four following
requirements (CAIN).

1. (C) Closed:
∀ a, b ∈ S, a ⋄ b ∈ S

2. (A) Associative:
∀ a, b, c ∈ S, (a ⋄ b) ⋄ c = a ⋄ (b ⋄ c)

3. (I) Identity:
∃! e ∈ S such that ∀ a ∈ S, a ⋄ e = e ⋄ a = a

4. (N) Inverse:
∀ a ∈ S, ∃! a−1 ∈ S such that a ⋄ a−1 = a−1 ⋄ a = e

2

3.1.2 Types of Groups

Groups may be

1. finite or infinite (we are interested in finite groups)

2. commutative or not

• G = 〈S, ⋄〉 is commutative iff
∀ a, b ∈ S, a ⋄ b = b ⋄ a

3.1.3 Examples of Groups

1. 〈Integers, +〉

2. 〈Rationals-{0},×〉

3. 〈Polynomials, +〉

4. 〈[0..N − 1], + modulo N〉

5. 〈[1..P − 1],× modulo P 〉 where P is a prime number

6. 〈{x ∈ [1..N] : (x, N) = 1},× modulo N〉

7. 〈Π(S), ◦〉, where Pi(S) is the set of permutations on some set S and ◦ is function composition

Note (x, N) = GCD(x, N)

3.2 Euler’s Totient Function

Define the set of positive integers less than N and relatively prime to N to be

Φ(N) = {x ∈ [1..N] : (x, N) = 1}

Euler’s Totient Function is defined as
φ(N) = |Φ(N)|

It is the number of positive integers less than N that are relatively prime to N .

If N is prime, then
Φ(N) = [1..N − 1]

and
φ(N) = N − 1

If N = pq, where p and q are prime, then

φ(N) = (p − 1)(q − 1)

3.2.1 Modular Exponentiation

Fact: If N is square-free (i.e., it does not have p2 as a factor for any prime p), then

∀x ∈ [1..N], xy modulo N = xy modulo φ(N) modulo N

If
y = 1 modulo φ(N),

then
xy = x1 = x mod N

3

4 RSA

4.1 RSA Algorithm

1. Pick large primes p and q, let N = pq

2. Pick e ∈ [1..N − 1], (e, φ(N)) = 1

3. Public Key = 〈e, N〉

4. Find d, the multiplicative inverse of e modulo φ(N).

5. Private Key = 〈d, N〉

To encrypt message m < N , (if larger, then break into chunks), compute

c = me modulo N

To decrypt, compute
m = cd modulo N = (me modulo N)d modulo N

= mde modulo N = m modulo N = m

To sign, compute
s = md modulo N

To verify a signature, compute

v = se modulo N = (md modulo N)e modulo N

= mde modulo N = m

and compare v to m

4.2 Security of RSA

Factoring large numbers appears to be very hard, and that is the only way we theoretically know of to break RSA
as an algorithm.

4.3 Implementation of RSA

4.3.1 Exponentiation of Large Integers

Perform exponentiation using the binary expansion of the exponent:

xa = an−1x
2n−1

an−2x
2n−2

...a1x
1a0x

0

where
a = an−1an−2...a1a0

in binary.

Precompute the powers of x to powers of 2 by repeated squaring

x, x2, x4, x8, ...

Perform modular reduction after each multiply

Total work is linear in the number of bits of a.

4.3.2 Finding large primes

Use Euler’s Theorem to guess and verify

4

4.4 Attacks on RSA

1. Factoring

2. Limited plaintext attack

3. System approach

5 PKCS - Public Key Cryptography Standards

RSADSI has produced a number of standards for use of PK crypto so that the subtle ways in which the system may
be used in an insecure way are avoided, and so that different organizations can build software that interoperates.

See http://www.rsasecurity.com/standards/

1. PKCS #1:RSA Cryptography Standard

2. PKCS #2: incorporated into PKCS #1

3. PKCS #3:Diffie-Hellman Key Agreement Standard

4. PKCS #4: incorporated into PKCS #1

5. PKCS #5:Password-Based Cryptography Standard

6. PKCS #6:Extended-Certificate Syntax Standard

7. PKCS #7:Cryptographic Message Syntax Standard

8. PKCS #8:Private-Key Information Syntax Standard

9. PKCS #9:Selected Attribute Types

10. PKCS #10:Certification Request Syntax Standard

11. PKCS #11:Cryptographic Token Interface Standard

12. PKCS #12:Personal Information Exchange Syntax Standard

13. PKCS #13: Elliptic Curve Cryptography Standard

14. ???

15. PKCS #15: Cryptographic Token Information Format Standard

5.1 PKCS#1

5.1.1 RSA encryption

• Format:
[0|2| ≥ 8 random bytes|0|data]

• The MSByte of zero is to guarantee that the message is less than the modulus

• The 2 is a format type (1 is for signatures)

• The random bytes are non-zero so that zero can be used to delimit the data from the padding, and for
confusion (this so-called confounder will prevent the same data from looking the same after encryption).

• The 0 delimits the pad from the data.

5

• The confounder helps eliminate the threat of encrypting a limited number of possible messages and com-
paring to the encrypted message sent - the attacker would have to guess the padding as well.

• It also prevents problems from sending the same message to multiple recipients when e=3 as long as the
padding is different for each recipient.

• If e=3, then it prevents the problem of sending a message that is no more than one third the length of the
modulus - the second byte is non-zero so this will never happen (the cubic root attack).

5.1.2 RSA Signing

• Format:
[0|1| ≥ 8 ff bytes|0|formatted digest]

• the formatted digest is the digest type and the digest encoded in ASN.1

• The MSByte of zero is to guarantee that the message is less than the modulus

• The 1 is the format type for signatures

• The padding bytes ensure that the number is large and unlikely to be a smooth number

• The 0 delimits the pad from the digest

• The digest formatting includes the digest type to prevent attacks that use a weak digest type to produce a
different message with the same digest as the digest you used, and then have the recipient believe that you
signed the other message with the weaker digest type.

6 Diffie-Hellman

6.1 Comments

• Oldest PKC still in use

• Provides a means for generating a shared secret

• Will not provide authentication by itself

• A and B start out with no knowledge at all

• They exchange some information publically

• Afterwards, each will be able to derive a secret that nobody else knows, even though the exchange was
public.

• Once A and B have a secret, they can use this to derive symmetric keys for conventional encryption, signing,
etc.

6.2 Diffie-Hellman Protocol

1. A and B publically announce prime number p and base g < p

2. A picks random SA,
B picks random SB

3. A computes TA = gSA modulo p,
B computes TB = gSB modulo p

4. A sends TA to B, B sends TB to A

6

5. A computes K = T SA

B modulo p,

B computes K = T SB

A modulo p

6. Shared secret K is
K = T SA

B modulo p = (gSB modulo p)SA modulo p

= g(SB)(SA) modulo p = g(SA)(SB) modulo p

= (gSA modulo p)SB modulo p = T SB

A modulo p

• A and B now share secret K, which nobody without knowledge of SA or SB can derive.

• To derive SA or SB, an attacker must compute the discrete logarithm of a large number, which is believed
to be very hard.

• SA = discrete log base g of TA modulo p

= g XY mod n = g XY mod n

Diffie-Hellman Key Exchange

A B

pick X pick Y
n,g,g X mod n

mod nYg

compute compute
Y

mod n) mod n(g (g
X X mod n)

Y
mod n

To break, attacker must solve discrete logarithm problem

Susceptible to Bucket Brigade Attack (Man in the Middle)

Main Problem: Key exchange but NO AUTHENTICATION!!

Figure 1: Diffie-Hellman Public Key Exchange

7

6.3 Bucket-Brigade Attack on Diffie-Hellman

If C interposes herself between A and B, then C can spoof A and B into believing that she is the other party.

To combat this, the p, g, and T may be made public for each principal and distributed reliably.

Alternatively, all members of a group may agree upon a common p and g, then each member A is associated with
TA. This is done in SSL.

Computes
K1 and K2
Computes

K1
Computes

K2

mod n

mod nYg

Diffie-Hellman Bucket Brigade Attack

pick X

C

pick Z

n,g,g mod nZ

mod ng Z

Xn,g,g
pick Y

BA

Figure 2: Bucket Brigade Attack on Diffie-Hellman Public Key Exchange

6.4 Encryption with Diffie-Hellman

If the first scheme above is used, then B may publish 〈pB, gB, TB〉 for anyone to access.

A may then pick SAB and compute
TAB = gSAB

B modulo pB

as well as
KAB = T SAB

B modulo pB,

then send B the message encrypted with KAB along with TAB, which B then uses to generate KAB and decrypt
the message.

7 El-Gamal Signatures

7.1 El-Gamal Algorithm

• Each principal has long-term, public/private key pair

(〈g, p, T 〉, S),

8

. . .

Publishes info

B

BB
,g

B
,g

B

B

B

Decrypt {M}K with K
B B

B

B B

B

B

Encrypt M with K

B

n

B

{M}k,g X

pick X

A

mod n)

mod n

Y
mod n(g X

compute K =

compute K =

(g
Y

mod n)

= g

Diffie-Hellman Public Key Encryption

X
mod n

mod nXY= g

B

XY

mod nY

mod n

Figure 3: Diffie-Hellman Public Key Encryption

• where the public 〈g, p, T 〉 and the private S are as in D-H:

T = gS modulo p.

To sign a message M ,

• the signer generates a new secret, SM

• computes
TM = gSM modulo p

• A digest dM is then computed of M concatenated with TM ,

dM = H(M |TM).

9

• Then a signature X is computed by

X = SM + dMS modulo (p − 1).

• The message M is sent along with X and TM .

To verify, on receipt of M, X and TM , the recipient

• computes dM (knowing H, M and TM),

• then checks that
gX = TMT dM modulo p,

since
gX modulo p = gSM+dMS modulo (p−1) modulo p

= gSM gdMS modulo p

= (gSM modulo p)(gdMS modulo p) modulo p

= TM (gS)dM modulo p

= TMT dM modulo p

All of these are available, since the recipient knows g, p, T, TM , M, X and H , and can compute dM and the other
quantities from these.

8 DSS - Digital Signature Standard (NIST 1991)

8.1 Comments

• uses DSA - Digital Signature Algorithm

• based on El-Gamal, which uses primes of 512 bits or more,

• modified to used a modulus of q, where q is a prime of 160 bits that divides p − 1.

8.2 DSS Algorithm

1. Generate p and q as above: find 160-bit prime q, then find a 512-bit prime p of the form kq + 1.

2. Generate g, where gq = 1 mod p, by generating random number h and taking

g = h(p−1)/q modulo p,

since
gq = (h(p−1)/q)q = hp−1 = 1 mod p (Fermat)

(Note: if this g = 1, try again!)

3. Choose long-term public/private key pair 〈T, S〉 by chosing random S < q and computing T = gS modulo p

4. Make p, q, g, and T public.

To sign a message M ,

1. On a per-message basis, choose 〈TM , SM 〉 by choosing a random SM and computing

TM = (gSM modulo p) modulo q

10

2. Compute S−1
M mod q

3. Calculate dM = H(M) for some hash function H .

4. Compute the signature X = S−1
M (dM + STM) modulo q

5. Send M, TM and X .

To verify, on receipt of M, TM and X ,

1. Calculate X−1 mod q and dM , then

2. x = dMX−1 mod q

3. y = TMX−1 mod q

4. z = (gxT y mod p) mod q

5. and check that z = TM .

If we define
v = (dM + STM)−1 mod q,

then
X−1 = (S−1

M (dM + STM))−1 mod q

= (dM + STM)−1(S−1
M)−1 mod q

= (dM + STM)−1SM modulo q

= SM (dM + STM)−1 modulo q

= SMv modulo q

and
x = dMX−1 modulo q = dMSMv modulo q

y = TMX−1 modulo q = TMSMv modulo q

so
z = (gxT y modulo p) modulo q

= (gdMSM v modulo qT TMSM v modulo q) modulo p) modulo q

= (gdM SMvgSTMSM v modulo p) modulo q

= (g(dM+STM)SMv modulo p) modulo q

= (g(dM+STM)SM (dM+STM)−1

) modulo p) modulo q

= (gSM modulo p) modulo q = TM

Note: the mod q in the exponents of g is OK since

gq = 1 mod p

11

9 Attacks on El-Gamal and DSS

• Signer must generate a unique secret number for each new message

• If same secret number were used for two messages, then the signer’s long-term secret number would be
exposed

• If that is the case, then anyone may forge the signature

Let

• messages M and M ′ be DSS signed using the same secret number S′

• X and X ′ be the signatures

• d and d′ be the hashes of M and M ′, respectively

Then
(X − X ′)−1(d − d′) modulo q = S′ modulo q.

Given a per-message secret S′ for message with signature X using T ′ and having hash d, compute

(XS′ − d)T ′−1 modulo q = S modulo q.

That is sufficient to generate signatures.

10 Zero-Knowledge Proof Systems

10.1 General Comments on ZKPSs

A zero-knowledge proof system does only authentication by proving that you know a secret associated with your
public key without revealing that secret.

RSA does that by allowing you to prove you know the private key without revealing it.

A class of these are based on NP-hard problems, such as graph isomorphism.

10.2 Graph Isomorphism Example of ZKPS

1. A generates a large graph G

2. A renames the vertices of G to produce G′, preserving the mapping between G and G′

3. These two graphs (G, G′) are A’s public information.

When B wants to authenticate A,

1. B asks A for a set of graphs {G1, G2, ..., Gk} isomorphic to G (and G′)

2. A generates these and sends them to B, preserving the mapping from G to each Gi

3. B then may, for each Gi, request the mapping from either G or G′ to Gi, but not both

4. B can easily verify the mappings to authenticate A

• If a third party C tries to impersonate A, then there would only be a 50-50 chance that B requests the
same mapping for the same graph, even if the same graphs had been used before,

• so the probability the C gets lucky on all k graphs is

(1/2)k,

which may be made arbitrarily small by making k large.

• As long as A never reveals a mapping for any graph to both G and G′, the mapping from G to G′ will
remain secret.

12

10.3 An Almost ZKP Authentication Scheme

A more efficient, almost-zero knowledge authentication scheme works as follows.

1. A picks large primes p and q, and computes a modulus n,

n = pq

as in RSA

2. A picks a random number x and squares it modulo n to produce

v = x2 modulo n

v is a number for which only A knows the square root mod n

3. A publishes 〈n, v〉,

When B wants to authenticate A,

1. A chooses k random numbers r1, r2, ..., rk,

2. for ri A sends si = r2
i modulo n to B

3. B partitions the si’s into two sets, S and T , then sends these to A

4. For each si ∈ S, A sends xri modulo n to B

5. For each si ∈ T , A sends ri to B

6. For each si ∈ S, B checks that the square of the reply is vsi modulo n,

7. For each si ∈ T , B checks that the reply is ri (i.e., si = r2
i modulo n)

If C tries to impersonate A,

1. C may have some si’s from previous exchanges for which C knows the response for set S

2. C may also generate some numbers and square them to get some numbers for which C knows the square
root mod n

3. But B partitions these two types of numbers into the sets S and T

4. So for each number there is only a 50-50 chance that C will have the correct answer available
C will only know xri for the si from the previous exchanges, but not ri;
C will know ri for the numbers C generates, but not xri)

5. With k numbers, the probability that C gets away with it is (1/2)k, which may be made arbitrarily small.

10.4 Signing with ZKPSs

1. In the authentication scheme, there is an interactive exchange, where B queries A in an unpredictable
manner about the data A has sent B

2. In a signature scheme, there is no interaction

3. So a one-way hash takes its place

4. Hash is not predictable from the message, so bits of the hash are taken to represent the queries

5. Since the data items on which the queries are based are included in the message, it is not possible to
rearrange them so as to answer only the questions the signer may want to answer

6. The number of questions may be higher to reflect the opportunity that the signer has to try many different
message/data combinations in order to find one that only asks for the information he has

13

