
Computer and Network Security

c©Copyright 2000 R. E. Newman

Computer & Information Sciences & Engineering

University Of Florida

Gainesville, Florida 32611-6120

nemo@cise.ufl.edu

Hashes
(Pfleeger Ch. 3, KPS Ch. 4)

Art
1 Definitions

1.1 One-way Function

A one-way function F is a function that is “hard” to invert. That is, if

F : A → B,

then given some b ∈ B, it is hard to find an a ∈ A for which

F (a) = b.

By hard, we mean that no method much faster than trying elements of A using brute force is known to invert F
effectively.

This is collision-resistance.

1.2 Hash Function

A hash H is a function that

• takes inputs from a large set, A, and

• maps them to fixed length elements in a finite set, B.

1.3 One-way or Secure Hash Function

If a hash function is also a one-way function, then it is a one-way hash or secure hash function.

2 Uses of Hashes

If H is a one-way hash, then it may be used in many ways:

1. for authentication

2. as a MIC (message integrity check)

3. as a MAC (message authentication check)

4. as a PRNG (for key stream generation)

5. for password security.

3 Hash Attacks

3.1 The Birthday Problem

If there are 23 or more people in a room, the odds are better than .5 that two of them will have the same birthday.

• Assume that 365 days of the year are equally likely as birthdays

• birthdays are random among people

• With N people in the room, there are
P = N(N − 1)/2

distinct pairs of people.

• For each pair, there is a probability of
p = 1/365

that the two have the same birthday.

• Expected number of matches is number of pairs times probability,

E(matches) = Pp.

• For the expected number of matches to exceed .5,

P > .5/p = 365/2 = 183.

• Thus
P = N(N − 1)/2 > 365/2

hence
N(N − 1) > 365

N >
√

365 > 19.

• With 20 people in a room it is around an even bet that two will have the same birthday.

2

3.2 So What?

Well, the Birthday Problem tells us

1. that to find two messages with the same n-bit hash value, only 2n/2 candidates will have to be considered,
on the average;

2. if another message m′ with the same n-bit hash value H(m) as some given message m is required, then on
the average, 2n−1 candidates will have to be tested.

Since hashes must protect against intentional misuse (a user producing two messages with the same hash that
mean very different things, then either

• signing one and claiming that the other was actually sent later, or

• getting someone else to sign the one and then sending the other with the signature of the first),

they must be twice as long as we would otherwise need for security.

4 Why use a hash?

One-way hashes are

1. small and fast to compute;

2. collision-resistant;

3. may be used with public key systems for signatures much faster than signing the entire message or document;

4. export a little better than pure cryptosystems do, yet can be used for encryption.

5 Authentication

Rather than using a challenge-response authentication method based on encrypting the challenge nonces, hashing
may be used instead.

A → B : rA

B → A : H(KAB |rA)

1. Alice sends Bob a nonce challenge,

2. Bob replies with the hash of a common secret KAB concatenated with the nonce (RA)

Alice can then verify the hash received, and no party that does not have access to KAB is likely to be able to
reproduce that value. Bob can authenticate Alice similarly.

NOTA BENE: rA must be used ONLY once by Alice, and there are a host of other subtleties that must be
considered in authentication.

6 MICs and MACs

Using a one-way hash for a Message Integrity Code (MIC):

• H(m) by itself does not suffice, since H is known to all

• H(K|m) may be used, so that only those who know K can either generate or check the integrity of m.

3

K M P

FF F FIV

H(K|M)

Hashing for MICs

Figure 1: Secure Hash for MIC

K M P

FF F F F

H(K|M)

IV

A P’

H(K|M|P|A)

Attack on MICs

Figure 2: Attack on MIC

4

• Unfortunately, several popular MD algorithms use as an intermediate value when computing the hash the
same quantity that is used as the hash output at the end. This means that, given a message m and its
hash, H(m), some addition A may be made to m and a valid hash computed for it by initializing the MD
algorithm to have H(m) as its carried information.

This is not a problem with MD2, and is easily solved in any of several ways. Two ways are as follows.

1. Use H(m|K) instead.

2. Use only half of the computed H(m) as the MIC

If only one other party knows the secret K, then the MIC serves as a MAC as well, authenticating that the
message was sent by the only other party to have the secret.

6.1 Keyed Hash MAC (HMAC)

• Uses secret key, so provides integrity if the key is shared

• and also authentication if only two parties have the key

• Published in 1996 by Bellare, Canetti, and Krawczyk

• Standardized in FIPS PUB 198

• Used in IPSEC, TLS, CCMP

HMAC(K,M) = H[(K ⊕ opad)||H[(K ⊕ ipad)||M]]

Here, K is the key, M is the message, opad=0x5c5c...5c and ipad=0x3636...36 are each one-block constants.

7 Encryption with Hashes

Hash function output is unpredictable, so may be used as PRNG in a Vernam Cipher.

7.1 OFB

• K0 = IV , the initialization vector, which is the key

• Ki = H(Ki−1), i = 1, 2, ...

• Ci = Pi + Ki, i = 1, 2, ...

• Pi = Ci + Ki, i = 1, 2, ...

7.2 CFB

• C0 = IV

• Ci = Pi + H(K,Ci−1), i = 1, 2, ...

• Pi = Ci + H(K,Ci−1), i = 1, 2, ...

7.3 Hash in Feistel Structure

They may be used as round function in Feistel structure

5

7.3.1 Karn’s approach

• Plaintext P = L|R (two halves, L and R, concatenated)

• Key K = l|r (two halves, l and r, concatenated)

• Ciphertext C = D|E where

– E = R + H(L|l)
– D = L + H(E|r)

• Decryption given K = l|r and C = D|E,

– L = D + H(E|r)
– R = E + H(L|l)

7.3.2 Weakness in Karn’s Approach

Luby and Rackoff: Karn’s approach susceptible to attack if two plaintext messages P and P ′ had the same left
half, P = L|R and P ′ = L′|R′ where L = L′.

If the attacker knows all the ciphertext, all of P and that L′ = L, then it is easy to find R′.

7.3.3 A Fix for Karn’s Approach

• K = l|r as before

• P = L|R as before

• X = R + H(l|L)

• Y = L + H(r|X)

• Z = X + H(l|Y)

• C = Z|Y = the ciphertext

7.3.4 Other Ways to Fix Karn’s Approach

Ensure that L′ 6= L ever, by prepending

• Timestamp (must protect time, resolution)

• Random number (must never reuse)

• Sequence number (must never wrap around, must remember)

8 Password Security with Hashes

8.1 Hashing Passwords

How to store information to verify passwords?

• in plaintext (bad idea)

• encrypted (could be decrypted if key were compromised)

• cryptographic hashes of passwords

In Unix and some other systems, password is

6

1. converted into the key for an encryption algorithm (modified version of DES in the case of Unix),

2. key used to encrypt a constant (0 in the case of Unix)

3. encryption may also be modified by a salt (12 bits in Unix)

4. so same password with different salts has different hash values (modifies the DES data expansion algorithm
in Unix)

E

"encrypted password"

E

"encrypted password"

S|PP

K

C

Salt

Hashing Passwords

Figure 3: Hashing Passwords for Storage

8.2 Lamport’s One-time Passwords

Goal: to provide a means for a central computer to verify the identity of a user in such a way that even if the
verification information kept on the computer is read, the attacker cannot fool the system.

Approach: Uses one-way hashes as follows.

1. User U picks password P and lifetime N

2. U passes P through hash function N times to produce PN :

PN = H(H(H...H(P)...))N times = HN (P).

3. PN is securely given to host C along with N ; C stores

〈U,N, PN 〉

When U wants to authenticate herself to C,

1. U sends request to C giving her name, U

2. C replies with the number N − 1

3. U computes PN−1 = HN−1(P) and sends this to C as message M

7

4. C then computes H(M) and verifies that
H(M) = PN

5. C then decrements N and replaces PN with PN−1

Lamport Hash Authentication

- Method for authentication even if someone reads server database

- A chooses password_A, n, computes H(password_A), H(H(password_A))...

A S
A

n

get password_A n-1 (password_A)

check that H(X) = Y

- Server holds (A, n, H n (password_A)=Y)

X=H

decrement n, set Y=X

Figure 4: Lamport One-Time Hash Authentication

1. H is one-way, so only U could have produced the preimage of PN , even if PN and H are known.

2. Susceptible to man-in-the-middle attack

3. Requires reinitialization when N = 1

4. Must be modified if more than one host is used with same P

9 Using encryption as a hash function

1. message broken into key-sized blocks

2. blocks used as keys in the encryption fuction to encrypt repeatedly some constant (once for each key)

3. If output is too small for a usable hash, then

(a) use more than one constant, or

(b) reverse the key order, etc.

8

M: K1 K2 K3 Kn

C E E E E

H(M)

Hashing Using Encryption

Figure 5: Hashing Using Encryption

10 Selected Hash Functions

10.1 Generally

There are a few steps that most hash functions must always take.

1. Arbitrary (bit or byte) length input is padded to a multiple of the block length - padding must be consistent
but does not have to be removeable

2. Some checksum may be added to the the padded input (MD2)

3. Padded input is processed in blocks

4. Blocks may have multiple passes made over them

5. Output of preceding block is passed as initialization information for processing the next block

10.2 MD2

1. byte-oriented computations

2. 128-bit digest

3. Arbitrary byte length input is padded to a multiple of 16 bytes. (last p bytes, 1 ≤ p ≤ 16, all have value p
in binary)

4. A 16-byte “checksum” is computed over the whole message and appended to its end

5. The padded, checksummed message is then processed in 16-byte chunks

6. carrying forward 128-bit intermediate results (pi)

7. 48 bytes are processed per chunk (mi,pi,mi ⊕ pi)

9

FF F FIV

P

H(M)

int int int intint

M: . . .

Generic Hash Function Operation

Figure 6: Generic Hash Function

8. with 18 passes at each stage

9. to produce 16-byte digest

10.3 MD4

1. 32-bit word computations

2. 128-bit digest

3. (almost) arbitrary bit length input

4. padded to 64 bits less than than a multiple of 64 bytes (512 bits)

5. 64-bit length field added to end

6. processed in 16-byte chunks,

7. carrying forward 128-bit intermediate results

8. with 3 passes per stage

9. with same constants for each message word in passes 1 and 3

10. to produce 16-byte digest

10.4 MD5

1. 32-bit word computations

2. 128-bit digest

3. (almost) arbitrary bit length input

10

byte n-1 byte n

pi-substitutionpass#
(0-17)

original message p bytes, all = p

p <= 16 bytes

multiple of 16 bytes (128 bits)

3. Compute intermediate values for each 16-byte chunk

1. Pad

2. Append checksum

16-byte chunk

intermediate message chunk

phantom byte(-1)
(init to 0)

byte 47byte 0

+

new intermediate discarded

4. Last intermediate value is MD2 hash value (digest)

MD2

Figure 7: MD2 structure

4. padded to 64 bits less than than a multiple of 64 bytes (512 bits)

5. 64-bit length field added to end

6. processed in 16-byte chunks,

7. carrying forward 128-bit intermediate results

8. with 4 passes per stage

9. with different constants for each message word in all passes

10. to produce 16-byte digest

11

k%2 64

M L-1

H

M 0 M 1 M 2

HH H

512

128 128128

A = 0x01234567
B = 0x89abcdef
C = 0xfedcba98
D = 0x76543210

A0

B0

C0

D0

A0

B0

C0

D0

+%2 32

+%2 32

+%2 32

+%2 32

128 128f F

MD5
1. Pad 0 k

message m 10000...000

Lx512 bits

. . .

h = ABCD0 h h h1 2 L
h3. Mangle

4. Result
2. Initialize

0 T

A

B

C

D

1 T

A

B

C

D

T

A

B

C

D

A

B

C

D

1

1

1

1 2

2

2

2 3

3

3

3

32

4

4

4

4

TH

ii-1h hf f fG H I

Figure 8: Overall structure of MD5

10.5 SHA

1. 32-bit word computations

2. 160-bit digest

3. (almost) arbitrary bit length input

4. MD4/MD5 padding

5. processed in 16-byte chunks,

6. carrying forward 160-bit intermediate results

7. with 5 passes per stage

8. using complicated mangling function

9. to produce 20-byte digest

12

A0

B0

C0

D0

A0

B0

C0

D0

+%2 32

+%2 32

+%2 32

+%2 32

128 128f F

0 T

A

B

C

D

1 T

A

B

C

D

T

A

B

C

D

A

B

C

D

1

1

1

1 2

2

2

2 3

3

3

3

32

4

4

4

4

TH

ii-1h hf f fG H I

MD5 (con’t.)

H(X,Y,Z) = (X + Y + Z)

I(X,Y,Z) = Y + (X | !Z)

F(X,Y,Z) = (X & Y) | (!X & Z)

G(X,Y,Z) = (X & Z) | (Y & !Z)

X-select

Z-select

parity

???

Figure 9: MD5 internals

10.6 SHA-2 family: SHA-256 (and SHA-512)

1. 32-bit (64-bit) word computations

2. (almost) arbitrary bit length input

3. MD4/MD5 padding

4. processed in 8-word chunks,

5. carrying forward 8-word intermediate results

6. through 64 (80) rounds to produce

7. 256-bit (512-bit) digest with truncated 224-bit (384-bit) version

10.7 SHA-3

NIST has opened competition on a new standard by 2012.

13

10.8 Summary

Hashes will be especially useful for

1. MICs

2. MACs/Digital Signatures

when public key cryptosystems are involved.

They are also useful for integrity when symmetric keys are used, and can authenticate if the key is only known
to two parties.

14

