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Basic Cryptography

Why here? In computer security, crypto is but one of several ways of achieving isolation, and is not one of the
more important ways. In network security, crypto is the main attraction - everything is done via message-passing
(ultimately), so the only secure way to achieve confidentiality and the authentication needed for access control is
through crypto.

1 Definitions and Models

1.1 Cryptography

1.2 Steganography

1.3 Cipher

1.4 Code

1.5 Plaintext

1.6 Ciphertext

2 Uses of steganography

2.1 Watermarks

2.2 Covert channels



3 Crypto types

3.1 Key Symmetry

• Symmetric M = D(E(M,K),K)

• Asymmetric M = D(E(M,K),K−1), where K 6= K−1 in general

3.2 Block vs. Stream

• Block
Plaintext is broken into fixed-length blocks, which are fed to the cryptosystem for encryption one block at
a time, and one block is output for each block input.

• Stream
Plaintext is fed to the cryptosystem for encryption one symbol at a time, and a symbol is output for each
symbol input.

4 Basics

4.1 Basic Goals

• Plaintext should not easily be obtained from ciphertext

• Key should not easily be obtained from ciphertext

• Keyspace should be large enough to resist brute-force attacks

• Confusion - effect of small change in plaintext on ciphertext should not be predictable

• Diffusion - small change in plaintext should affect large part of ciphertext (block ciphers, feed-forward)

4.2 Cryptanalysis

Attacks classified by amount of knowledge available to the cryptanalyst about P ; it is assumed that the crypt-
analyst knows C = E(P,K) but does not know K. The cryptanalyst’s goal may be to find just P or to find K
also.

• Ciphertext-only - only C is known; quantity counts

• Recognizable plaintext - C is known, and there is a test to determine if D(C,K ′) is valid plaintext for a
candiate key K ′

• Guessed plaintext - C is known, and (part or all) of the corresponding P may be guessed

• Partial plaintext - both C and some of P are known

• Known plaintext - both C and all of P are known

• Chosen plaintext - the attacker can submit any P for encryption and obtain C = E(P,K)
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4.3 Systems Models
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Figure 1: Symmetric cryptosystem model
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Figure 2: Asymmetric cryptosystem model
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4.4 Functions

4.4.1 Converting text to numbers

• Number letters - A=0, B=1, ..., Z=25 (26 symbols)

• Both cases, numbers, ‘.’ and ‘ ’ (64 symbols)

• ASCII, EBCDIC, etc. (128 or 256 symbols)

4.4.2 Types of functions

Function f : A → B is

• total iff f is defined for every element a ∈ A otherwise, f is a partial function;

• onto (surjection) iff
∀ b ∈ B,∃ a ∈ A such that f(a) = b

• one-to-one (injection) iff
∀ b ∈ f(A),∃! a ∈ A such that f(a) = b

• a bijection iff f is total, one-to-one and onto;

• a permutation iff A = B and f is a bijection.

Note that the image of A under f is

f(A) = {b ∈ B | ∃ a ∈ A such that f(a) = b}

4.4.3 Relevance to cryptography

• Only bijections are totally invertible.

• Cryptography is based on invertible functions (or else cannot decipher).

• In general, it uses keyed functions fk(x) = f(x, k) where fk is a bijection

• An issue is the size of the key

• Another issues is the size of the key space
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4.5 Groups

4.5.1 Definition

A group is a pair G = 〈S, ⋄〉, where S is a set and ⋄ is a binary function on S, that satisfies the four following
requirements (CAIN).

1. (C) Closed:
∀ a, b ∈ S, a ⋄ b ∈ S

2. (A) Associative:
∀ a, b, c ∈ S, (a ⋄ b) ⋄ c = a ⋄ (b ⋄ c)

3. (I) Identity:
∃! e ∈ S such that ∀ a ∈ S, a ⋄ e = e ⋄ a = a

4. (N) Inverse:
∀ a ∈ S, ∃! a−1 ∈ S such that a ⋄ a−1 = a−1 ⋄ a = e

Groups may be finite or infinite (we are interested in finite groups), and may also be commutative.

• G = 〈S, ⋄〉 is commutative iff
∀ a, b ∈ S, a ⋄ b = b ⋄ a

4.6 Monoalphabetic substitution cipher

4.6.1 Caeser cipher

ci = pi + 3 modulo 26

4.6.2 Rotational cipher

ci = pi + k modulo N

where N is the size of the symbol set and key k ∈ [0..N ].

4.6.3 Multiplicative cipher

ci = a × pi modulo N

where key a ∈ [1..N ] and N must be relatively prime, else a does not have an inverse.

4.6.4 Affine cipher

ci = a × pi + b modulo N

where key (a, b) ∈ [1..N ] × [0..N ], and a and N must be relatively prime

4.6.5 General MSC

Must specify general permutation - key length is ⌈log2N !⌉ bits to indicate one of N ! permutations.

• Attack: size of keyspace

• Attack: frequency-based attack
Sorted frequency histogram of ciphertext should match well the the expected sorted frequency histogram of
plaintext
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Figure 3: Relative frequency of characters in English text
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Figure 4: Sorted relative frequency of characters in English text
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(English)
Frequency Distribution − Monoalphabetic Substitution

2

4

6

8

10

12

14

P

ZYXWVUTSRQPONMLKJIHGFEDCBA

A
J H

ZYXWVUTSRQPONMLKJIHGFEDCB

Figure 5: Relative frequencies of characters in MSC English

4.7 polyaphabetic cipher

flattens frequency histogram

• Viginere tableau

• Encryption keys

– Single word/phrase repeated (GOGATORSGOGATORSGOGA...)

– Word/phrase with

∗ duplicate characters removed (GOATRSGOATRSGOA...)

∗ rest of alphabet following in order
(GOATRSBCDEFHIJKLMNPQUVWXYZGOATRSBCD...)

• Attack: index of coincidence
The IOC is a measure of variance in the frequency histogram.

Let r(x) be the relative frequency of x in the data,

r(x) = f(x)/n,

where f(x) is the frequency with which x appears in the n characters of the text. If n = 26 (for symbols
from the Roman alphabet), and encryption makes the distribution perfectly smooth, each character x would
have

r(x) = 1/26 ≈ 0.0384
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GOGAT ORSBE ATNOL ES

SECSE CSECS ECSEC SE

61601 11114 01111 41
 4  9 478    9341  8

14214 21421 42142 14
8  8   8  8   8   8

21812 13232 42311 22
48 83 652 2  1183 22

21812 19232 42511 22
48 83 6 2 2  1 83 22

YSISX QJWDW EVFSN WW

Polyalphabetic Substitution

Plaintext:

ptxt - numerical:

Key:

key - numerical:

ptxt + key:

Ciphertext:

ctxt = ptxt + key modulo 26:

Figure 6: Example of a polyalphabetic cipher

The nonuniformity of distribution for a single symbol x is just the difference between its observed relative
frequency and the average, 1/n (in this case, 1/26), or

d(x) = r(x) − 1/26.

Since these have positive and negative values (for peaks and valleys, resp.) summing these over all symbols
would amount to zero - not very useful. (IOC con’t)

Squaring these nonuniformities makes them all positive, and the greater the variation, the larger the resulting
number, so one measure of variation is

V ar = Σx∈A(r(x) − 1/|A|)2 = Σx∈A(r(x))2 − 1/|A|

(This really does work - try it.)

If x is chosen at random as the first character, then in the remaining text, its relative frequency (and
probability that x will again be chosen as the second character, since the first one selected is no longer
available) is

(f(x) − 1)/(n − 1),

so the probability of picking two different characters out of the text and having both of them be x is

f(x)(f(x) − 1)/n(n − 1)

The Index of Coincidence is just the sum of these probabilities over all symbols,

IC = Σx∈Af(x)(f(x) − 1)/n(n − 1).

Another way of looking at it is that the variation measure above has a useless constant term, 1/26, that is
always subtracted from the interesting part. IC just eliminates that constant term and specifically accounts
for the difference that a finite amount of text makes in the computation.
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IC varies from .068 for 26-symbol English prose enciphered with a monoalphabetic substitution, to .038 for
encipherment with a large number of alphabets.

Its usefulness declines as the number of alphabets used for encipherment increases, as the curve becomes
pretty flat after about 4 alphabets.

However, it can be used to gauge whether a small number of alphabets were used, and to test a subtext to
see if it may have been enciphered with a monoalphabetic substitution.

• Attack: guessing number of ciphers (in round robin) This approach can use the SFH or the IC approach
to test a series of hypotheses regarding the number of alphabets used (or the periodicity) to encrypt the
plaintext.

• Attack: Kasiski attack - uses repeated polygrams (multiple symbol sequences) in the ciphertext to guide
guessing of the period of a periodic encipherment. The assumption is that two repeated texts will be
the result of two identical plaintext polygrams that were enciphered using the same sequence of keys, so
distances between these pairs should be a multiple of the period of the cipher.

THEGA TORSA RETHE BESTT EAMIN THESE CGOGA TORSB
gator sgato rsgat orsga torsg ators gator sgato

EATTH EDAWG SBEAT THEVO LSBEA TTHET IDEBE ATTHE
rsgat orsga torsg ators gator sgato rsgat orsga

atorsga
BEATTHE

24 2,3,4,6,8,12,24

gat
THE

12

54

2,3,4,6,12

2,3,6,9,12,18,27,54

ato
THE

18

12 2,3,4,6,12

2,3,6,9,18

2,3,6

Common Factors

Kasiski Attack Example

12 54
18

12 24

torsg ators gator sgato rsgat orsga tor
CATSB EATTH ETIGE RSBEA TTHEW AREAG LES

Figure 7: Example Kasiski Attack

General methodology for polyalphabetic substitution

1. Use IC to estimate number of alphabets; if more than a few
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2. Use Kasiski to get candiate key lengths,

3. Based on the candidate key lengths, separate the ciphertext into l pieces (ci goes into piece i modulo l)

4. Take the IC for each piece to verify that only one alphabet was used to encrypt it, or try another candidate
length

5. Use sorted frequency histogram to break monoalphabetic substition in each piece

10



4.8 One-time pad

• Stream cipher

• Truly secure (confidentiality - iff used only once)

• Issue: Random number generation

• Vernam cipher

• MDSR (multidimensional spatial rotation - Casio)

• General OTP - any invertible binary function may be used

– ⊕ for bits

– + modulo N

– × modulo N if N is prime

• Use block cipher as PRNG to make stream cipher

0 0 0 0

1 1 1 1 1 10 0 0 0

keystream

plaintext

ciphertext

0

PRNG

1 0 1 1 0 1 0 0 0 1

1 1 1 1 1

Figure 8: Example of a Vernam cipher
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4.9 Transposition ciphers

• Columnar Transpositions

• General Transpositions

Columnar Transposition

read out column−wise

write in row−wise

Plaintext: THEGATORSARETHEBESTTEAMINTHESEC

Ciphertext: ttrbetchoeeahxertsmexgshtisxaaetnex

C X X X X
T H E S E
E A M I N
B E S T T
R E T H E
T O R S A
T H E G A

Figure 9: Columnar transposition cipher

Plaintext: THEGA TORSA RETHE BESTT EAMIN THESE CGOGA TORSX

Ciphertext: HAGTE OASTR EEHRE ETTBE ANIEM HESTE GAGCO OXSTR

Transposition

Key:
(30421)

Figure 10: Example of a transposition cipher

4.10 Product cipher (concatenated cipher)

• Can increase period

• Can increase confusion and diffusion

Product Ciphers - Periodicity

L1

L2

LCM(L1,L2)

combined

cipher 1

cipher 2

product

Figure 11: Product cipher period expansion
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5 Theory

5.1 Shannon Characteristics

1. Secrecy required should determine level of effort

2. Keys and algorithm should be low in complexity - easy to generate good keys and apply them

3. Simple implementation

4. Errors should not propagate

5. Size of ciphertext should be no larger than plaintext

5.2 Redundancy

Absolute rate of a language is
A = ⌈lg(N)⌉,

where N = size of alphabet, ⌈⌉ = ceiling.

If the number of meaningful n-letter messages is 2Rn, then the rate of the language is R ≤ A, and the redundancy
of the language is

D = A − R,

i.e., D is the number of extra bits per symbol used.

5.3 Information theoretic security

let h(C) be the set of possible plaintexts for ciphertext C. An encryption is effectively secure if

Prob(h(C) = P ) < ǫ

for some arbitrarily small ǫ

Dual message entrapment - ǫ is never > 1/2

Ideally, knowing that the ciphertext is some particular C1 should not narrow down the possible plaintexts,

Prob(h(C1) = P |C1) = Prob(h(C1) = P ) = Prob(P )

5.4 Unicity Distance

Unicity distance is a measure of the amount of ciphertext needed to break a cipher. Let

H(P |C) = Σall P Prob(P |C)lg(1/Prob(P |C))

Unicity distance is the length n of the smallest message for which H(P |C) is close to 0.

With 2H(P ) keys, a cryptosystem has unicity distance

N = H(P )/D

Probability of spurious decryption is p = (1 − q), where

q = 2n(R−A) = 2−Dn
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